جبرهای اندازه و جبرهای گروهی وزندار
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه کردستان - دانشکده علوم پایه
- نویسنده عنایت باباخانی
- استاد راهنما صابر ناصری محمدعلی اردلانی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1392
چکیده
فرض کنید w یک تابع وزن بورل اندازه پذیر روی گروه موضعاً فشرده g باشد. در این پایان نامه نتایج اصلی از جبر گروه وزندار(l^1 (g,w و جبر اندازه وزندار (m_b (g,w شامل همانی تقریبی، منظم آرنز بودن و حاصلضرب های فشرده روی این دو ارائه می دهیم.
منابع مشابه
جبرهای فیستر با برگردان
در این مقاله به مرور فرمهای دوخطی فیستر روی میدانها و برگردانهای فیستر روی جبرهای سادهٔ مرکزی میپردازیم. همچنین به بیان حدسهای مهم در این راستا، تلاشهای انجام شده برای اثبات آنها و نیز مسائل باز باقیمانده در مشخصهٔ مخالف دو خواهیم پرداخت. درنهایت، تلاشهای انجام شده برای تعمیم این حدسها به مشخصهٔ دو و تفاوتهای نتایج به دست آمده در این مشخصه با سایر مشخصهها نیز مرور میشوند.
متن کاملجبرهای باناخ انقباض پذیر
فرض کنید یک جبر باناخ باشد. ما نشان می دهیم که اگر یک ایده ال انقباض پذیر ازیک جبر باناخ باشد آنگاه برقرار است. سپس وجود یک خود توان می نیمال مرکزی را در یک جبر باناخ انقباض پذیرکه یک تابعک ضربی نا صفر روی آن موجود باشد ثابت می کنیم. همچنین مفهومb- انقباض پذیری و یکی از فرم های معادل آن را معرفی می کنیم و با مثالی نشان می دهیم که b- انقباض پذیری به طور اکید از انقباض پذیری ضعیف تر است.
متن کاملC*-جبرها و جبرهای کامیان-پسک تجزیه ناپذیر
فرض کنیم A یک گراف سطری- متناهی و K یک میدان است. در این مقاله، به مطالعه تجزیهپذیری جبر کامیان-پسک KP(A) و C*-جبر C*(A) متناظر با A میپردازیم. به ویژه، به کمک ویژگیهای A و گروهوار G_A ، شرایط لازم و کافی برای این تجزیهپذیری ارایه میشود. علاوه بر این نشان میدهیم در شرایط خاص میتوان جبر کامیان-پسک را بهصورت حاصلجمع مستقیم متناهی از جبرهای کامیان-پسک تجزیهناپذیر نوشت.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه کردستان - دانشکده علوم پایه
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023