حل عددی یک مساله کنترل بهینه کسری با استفاده از ماتریس های عملیاتی برنشتاین

پایان نامه
چکیده

در این پایان نامه، ما یک روش جدید برای حل تقریبی مسایل کنترل بهینه کسری مقید ارایه می کنیم. رویکرد جدید ما بر اساس تقریب توابع توسط چندجمله ای های پایه ی برنشتاین می باشد. برای بهبود کارایی محاسباتی در روش پیشنهادی، ماتریس های عملیاتی انتگرال ، مشتق، دوگان و ضرب چندجمله ای های برنشتاین بدست آمده و جایگزین عملگر های مربوطه در محاسبات می شوند. در روش ما، با استفاده از ماتریس های عملیاتی برنشتاین و بر اساس رویکرد پارامتریک ارایه شده توسط دینکل باخ برای مساله ی برنامه ریزی کسری، یک مساله ی برنامه ریزی کسری غیر خطی را حل می کنیم. برای آزمون روش ارایه شده، یک مساله ی کنترل بهینه ی کسری مقید مربوط به حداکثر سازی بازده کل تحت شرایط دینامیکی معرفی و مدل سازی شده است . کارایی، دقت و قابلیت اطمینان روش پیشنهادی، با مقایسه ی نتایج بدست آمده روی چندین مساله ی آزمون نشان داده شده است.

منابع مشابه

روش عددی برای حل یک کلاس از مساله کنترل بهینه کسری دوبعدی با کمک ماتریس های عملیاتی چندجمله ای لژاندر

در این مقاله یک روش برای حل یک کلاس از مساله کنترل بهینه کسری دوبعدی با استفاده از ماتریس های عملیاتی چندجمله‌ای لژاندر ارائه می‌دهیم. لازم به ذکر است که دستگاه دینامیکی مساله براساس مشتق کسری کاپوتوی دوبعدی می باشد. در روش مورد نظر، انتگرال دوگانه توسط قاعده گاوس-لژاندر دوبعدی تقریب زده می شود و سپس با کمک معادله لاگرانژین یک دستگاه معادلات غیرخطی بدست می آید. این دستگاه معادلات غیرخطی ب...

متن کامل

حل عددی یک مسئله کنترل بهینه با مشتقات کسری با استفاده از ماتریس های عملیاتی برنشتاین

در این پایان نامه، یک روش عددی جدید برای پیدا کردن جواب تقریبی مسایل کنترل بهینه ی مقید وابسته به تغییرات زمان از نوع چندبعدی با مشتق های از مرتبه ی کسری ارایه شده است. مباحثی از حساب دیفرانسیل مشتق کسری کاپوتو، مشتق و انتگرال کسری ریمن-لیوویل و ویژگی های آن ها بیان شده است. این بخش از حساب، کاربرد های گسترده ای در زمینه های مختلف علوم دارد. رویکرد حل ما بر اساس تقریب توابع با استفاده از پایه ی...

حل عددی معادلات دیفرانسیل کسری با استفاده از ماتریس های عملیاتی چندجمله ای های ژاکوبی

در این پایان نامه، ماتریس های عملیاتی مشتق کسری کاپوتو و انتگرال کسری ریمان - لیوویل چندجمله ای ژاکوبی در نظر گرفته شده است. با‎‎ استفاده از روش های طیفی و نقطه گذاری با کمک ریشه های چندجمله ای ژاکوبی به حل معادلات دیفرانسیل خطی و غیرخطی می پردازیم. این ماتریس ها به همراه روش تاو مساله اصلی را به یک دستگاه معادلات جبری خطی یا غیرخطی تبدیل می کنند. معادلات دیفرانسیل کسری خطی و غیرخطی از نظر عددی...

15 صفحه اول

حل معادلات دیفرانسیل کسری با استفاده از یک ماتریس عملیاتی جدید

در این پایان نامه انتگرال ها و مشتقات کسری و برخی از ویژگی های آن ها را معرفی می کنیم.همچنین به تعمیم ماتریس عملیاتی لژاندر برای حل عددی دسته ای از معادلات دیفرانسیل کسری در حالت کاپوتو می پردازیم.مشخصه اصلی این روش، کاهش مسئله اصلی به یک دستگاه معادلات جبری می باشد که تا حد زیادی مسئله را ساده می سازد. این روش را برای حل دو نوع از معادلات دیفرانسیل کسری خطی و غیر خطی به کار می بریم. در پایان ...

یک روش مستقیم برای حل معادلات انتگرال دوبعدی خطی با استفاده از ماتریس های عملیاتی با توابع پالس- بلوکی

روش بسط بر مبنای توابع پالس- بلوکی برای حل عددی معادلات انتگرال ولترا و فردهلم دو بعدی نوع اول و دوم ارایه شده است. تحقیق ارایه شده بر اساس معرفی خانواده ای از ماتریس های عملیاتی انتگرال گیری است. آنالیز خطا انجام شده، کارایی و دقت روش ارایه شده را نشان می دهد. هم چنین چند مثال عددی آورده شده است.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023