روش یکنواخت برای معادلات دیفرانسیل فازی

پایان نامه
چکیده

ما وجود و تقریبی از جواب‎‎های معادلات دیفرانسیل فازی غیر خطی را بررسی می کنیم. روش‎‎ ارائه شده براساس جواب های بالا و پایین و روش های تکرار یکنواخت می باشد که توضیحات آن را می توان در ‎cite{[24]}‎ برای معادلات دیفرانسیل کلاسیک یافت. توسعه ی روش تکرار یکنواخت معادلات دیفرانسیل فازی با مراجعه به برخی از خواص همگرایی دنباله ها و حفظ ترتیب در همگرایی در بخش اول گنجانده شده است. با توجه به اینکه شناخت زیر مجموعه های فشرده ی نسبی از مجموعه ی توابع فازی در ارائه ی روش بسیار مهم است ابتدا در یک بخش جداگانه به بررسی این مطلب مهم می پردازیم. ‎ و در بخش آخر به بررسی معادلات "خطی" فازی می پردازیم و در نهایت تعدادی مثال از تشریح مفهوم نتایج اعمال شده و نشان دادن کاربرد نتایج جدید قرار داده ایم. ترتیب و همگرایی برای توسعه ی روش یکنواخت، ما به برخی از نتایج در جهت حفظ همگرایی و معیار فشردگی توابع فازی نیاز داریم. در این بخش ما برخی خواص نسبی برای ترتیب و همگرایی در فضای ‎$e^{1}$‎ و فضای توابع فازی پیوسته که در یک بازه ی حقیقی فشرده تعریف شده است را مورد بررسی قرار می دهیم. معیار فشردگی در فضاهای توابع فازی برای بدست آوردن نتایجی که می توان از آنها در بررسی وجود جواب برای معادلات دیفرانسیل فازی با روش های ذکر شده ‎‎استفاده کرد باید نتایج خواص فشردگی در فضای توابع فازی، از یک دیدگاه متفاوت مورد تجزیه و تحلیل قرار گیرد. در این بخش قصد داریم معیاری برای زیر مجموعه ی فشرده ی نسبی از فضای c([a,b]*i,r) را پیدا کنیم. معادلات دیفرانسیل فازی خطی در غیرخطی در این بخش وجود و یکتایی جواب معادلات دیفرانسیل فازی "خطی" مستخرج از {[35]} و برخی نتایج مقایسه ای از {[39]} برای توسعه ی روش های تکرار یکنواخت برای مسئله ی ‎شرط اولیه مذکور‎، را اعمال می کنیم

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

متن کامل

کران بالا برای فشار سیال داخل لوله بوسیله معادلات دیفرانسیل

شبکه­هایی بسته از لوله­های حاوی یک جریان پرفشار از یک سیال در بسیاری از پدیده­های طبیعی و دست­ساز وجود دارند. دینامیک چنین شبکه­هایی به پارامترهای زیادی وابسته است. از یک سو به کنش و واکنش پیچیده بین بدنه جریان و مواد تشکیل دهنده هر یک از لوله­ها و از سویی دیگر به اتصالات بین لوله­ها در شبکه وابسته است. زیرا جریان در لوله­های مختلف یک شبکه در نقاط اتصال بر یکدیگر اثر می­گذارند. یک روش جایگزین ب...

متن کامل

تقریب خطی برای معادلات دیفرانسیل غیر خطی و مسئله پایداری

در این مقالع بعنوان مثال معادله دیفرانسیل گسترش جمعیت تحت مطالعه و نقاط استثنایی (نقاط حل) این معادله از نقطه نظر پایداری و ناپایداری مورد بحث قرار گرفته است . طی این مثال و مثالی دیگر نشان داده شده که همیشه خطی کردن معادلات دیفرانسیل غیر خطی نتیجه مطلوب را نخواهد داد. بالاخره در قسمت آخر تعریفات ریاضی پایداری از نقطه نظر لاپلاس لیاپولف و پوانکاره و شرط کافی برای اینکه بتوان معادله دیفرنسیل غیر...

متن کامل

آشنایی با معادلات دیفرانسیل تأخیری

در این مقاله، دستگاه های دینامیکی متناظر با معادلات دیفرانسیل تأخیری را معرفی و برخی نتایج آشنا و مهم دربارۀ آنها را بیان می کنیم. همچنین به برخی از پیچیدگی هایی که در اثر وجود تأخیر در معادلات بروز پیدا می کنند، اشاره می کنیم. همانند معادلات دیفرانسیل عادی، با مطالعۀ دستگاه های خطی و دستگاه های خطی سازی شده حول نقاط تعادل، شناخت خوبی نسبت به معادلات دیفرانسیل تأخیری و پایداری نقاط تعادل می توا...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023