یک روش بدون شبکه براساس کمترین مربعات وزندار شده متحرک

پایان نامه
چکیده

در این پایان نامه، یک روش بدون شبکه مبتنی بر تقریب کمترین مربعات متحرک مورد بررسی قرار می گیرد. ابتدا ‏به معرفی این تقریب می پردازیم‏. سپس‏، آنالیز خطا‎ را بررسی کرده و کاربرد آن را در حل معادلات دیفرانسیل جزئی شرح می دهیم. در ادامه به روش های موضعی مبتنی بر این تقریب که به "روش های بدون شبکه پترو-گالرکین موضعی" موسوم هستند‏، می پردازیم. در این روش، معادله دیفرانسیل به فرم ضعیف تبدیل می شود و ‏از تقریب کمترین مربعات برای توابع کوششی و از توابع تست متفاوت ‏با توابع کوششی برای حل معادله دیفرانسیل استفاده می کنیم. همچنین‏، به بسط این تکنیک پرداخته و روشی بدون شبکه در مکان و زمان برای حل معادله ی انتقال گرما مطرح می کنیم.‎‎

منابع مشابه

ارائه تابع تخمین حداقل مربعات متحرک نگاشتی برای روش عددی بدون شبکه حداقل مربعات گسسته

روش بدون شبکه حداقل مربعات گسسته کارایی مناسب خود را برای حل معادلات دیفرانسیلی مشتقات جزیی حاکم بر مسائل مهندسی نشان داده‌است. این روش بر پایه کمینه کردن تابعک حداقل مربعاتی استوار است. تابعک حداقل مربعاتی به صورت مجموع وزن‌داری از باقیمانده‌ی معادله دیفرانسیلی و شرایط مرزی حاکم تعریف شده‌است. معمولا از تابع تخمین حداقل مربعات متحرک (MLS)، برای ساختن توابع شکل در روش بدون شبکه حداقل مربعات گسس...

متن کامل

حل عددی معادلات انتگرال با روش کمترین مربعات متحرک

در این پایان نامه بعد از معرفی روش کمترین مربعات متحرک به حل عددی معادلات انتگرال یک بعدی و دو بعدی و معادلات انتگرال-دیفرانسیل خطی و غیر خطی می پردازیم. این روش یک ایزار موثر برای تقریب یک تابع مجهول با استفاده از داده های نا منظم است. روش کار به این ترتیب است که ابتدا جواب معادله را با روش کمترین مربعات متحرک تقریب زده و با کمک نقاط هم محلی به یک دستگاه رسیده و سپس آن را حل می کنیم.

15 صفحه اول

مهاجرت لرزه‌ای کیرشهف با تفکیک‌پذیری بالا به روش کمترین مربعات منظم شده با نُرم-1

مهاجرت به روش کیرشهف یکی از ساده‌ترین و رایج‌ترین الگوریتم‌های مهاجرت داده‌های لرزه‌ای است. از آنجا که عملگر مهاجرت کیرشهف، الحاقی عملگر مدل‌سازی است، قادر به بازسازی درست دامنه بازتاب‌ها نبوده و تصویر نهایی مهاجرت یافته دارای وضوح کافی نخواهد بود. مهاجرت کمترین مربعات برای رفع این مشکل و بازسازی صحیح دامنه معرفی شد اما بخاطر ابعاد بزرگ ماتریس‌ها، حل مسأله به‌صورت تکراری انجام می‌شود که زمان‌بر...

متن کامل

تجزیه طیفی با استفاده از روش وارون‌سازی کمترین مربعات مقید شده

تجزیهطیفیداده‌هایلرزه‌ایبا کمک تبدیل‌های زمان-بسامد،دامنه‌هایلرزه‌ایراکهتابعیاززمانومکانهستندبهمقادیر طیفیکهتابع بسامد،زمانومکانهستند،تبدیلمی‌کننداین ابزاردر زمینه‌های گوناگون مانند تعیینضخامتلایه، نمایش رخساره‌هایچینه‌ای،توصیف مشخصاتمخزنواکتشاف مستقیم منابعهیدروکربن کاربرد دارد. کاملاً واضح است که هرچه تفکیک زمانی و بسامدی در صفحه زمان‌–بسامد بیشتر باشد، رخدادها را می‌‌توان بهتر جداسازی کرد. در...

متن کامل

نکته ای چند در بکارگیری صحیح روش کمترین مربعات

امروزه همه نقشه­ برداران می ­دانند که نمی­ توان یک طول یا زاویه را بدون خطا اندازه گرفت. برای برقراری روابط ریاضی حاکم بر مشاهدات، لازم است سرشکنی صورت گیرد. یکی از روش های موجود برای توزیع خطاها روش کمترین مربعات است. متأسفانه بسیاری از همکاران از نکته­ های ظریف نظریه کمترین مربعات بی­ اطلاع­اند. در این مقاله به صورت گام به گام به بررسی نظریه کمترین مربعات و روش بکارگیری آن خواهیم پرداخت.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه کردستان - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023