حل معادلات دیفرانسیل مرتبه کسری با استفاده از پایه های تعمیم یافته بر اساس روش های طیفی

پایان نامه
چکیده

معادلات دیفرانسیل مرتبه ی کسری کاربرد زیادی در مدل سازی پدیده های فیزیکی و علوم مهندسی دارند. اما یافتن جواب تحلیلی و دقیق برای این معادلات در اکثر موارد خصوصا در حالت غیر خطی آنها بسیار دشوار است. در نتیجه استفاده از روش های عدددی کارامد برای حل این معادلات بسیار مورد توجه قرار گرفته است. یکی از پر کاربرد ترین این روش ها که از دقت بسیار بالایی نیز برخوردار است روش های طیفی است. در اینگونه روش ها جواب تقریبی مسئله به صورت ترکیب خطی از توابع مستقل خطی که توابع کوششی نامیده می شوند در نظر می گیریم. دسته ی عمده ای از این توابع که در این روش ها مورد استفاده قرار می گیرند در واقع جواب های یک معادله دیفرانسیل مرتبه ی ددوم هستند که به انها مسایل اشتروم-لیوویل گوییم. در این پایان نامه حالتی از مسئله ی اشتروم-لیوویل مرتبه ی کسری را بیان می کنیم و سپس پایه هایی که از این مسایل دست آمده برای حل معادلات دیفرانسیل مرتبه ی کسری به کار می بندیم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

متن کامل

حل عددی معادلات دیفرانسیل و انتگرال مرتبه کسری با استفاده از روش های طیفی بر اساس عملگرهای ماتریسی

در این پایان نامه حل عددی معادلات دیفرانسیل و انتگرال مرتبه کسری بر اساس عملگرهای ماتریسی مورد ‏بررسی قرار می گیرد. از مزایای این روش راحتی در پیاده سازی و تسهیل محاسبات عددی است که در ‏معادلات دیفرانسیل همواره مورد توجه بوده است. در معادلات دیفرانسیل مرتبه کسری این عملگرها از قدمت ‏چندانی برخوردار نیستند ولی به طور روز افزون در حال گسترش هستند. در اینجا اساس روش عددی مورد ‏بحث، تقریب جواب مسئل...

15 صفحه اول

تعمیم روش طیفی تاو برای حل عددی معادلات دیفرانسیل کسری چند-مرتبه ای با تحلیل همگرایی

هدف اصلی از این پایان نامه، فراهم آوردن یک روش عددی موثر برای معادلات دیفرانسیل کسری بر پایه روش طیفی تاو است. تعمیمی از روش تاو محاسباتی با پایه چند جمله ای های متعامد برای تبدیل معادلات دیفرانسیل کسری به شکل معادلات ماتریسی آن ها پیشنهاد شده است. مشتقات کسری به مفهوم مشتق کاپوتو در نظر گرفته شده است. سرعت طیفی همگرایی برای روش پیشنهادی در ‎$‎l^2‎$‎-‎نرم برقرار‎ شده است. روش را بر روی چندین...

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

متن کامل

روش بدون شبکه برای حل عددی معادلات دیفرانسیل از مرتبه کسری

در این مقاله یک تکنیک کلی شناخته شده با عنوان روش بدون شبکه برای حل معادلات دیفرانسیل از مرتبه کسری درنظرگرفته شده است.جواب دقیق را با کمک روش مبتنی بر هم محلی توابع پایه شعاعی مورد تقریب قرار‏ ‎‏می‎دهیم.این تکنیک نقش مهمی که ایفا می کند معادله دیفرانسیل کسری را به یک دستگاه معادلات تقلیل می دهد.نتایج عددی بیانگر دقت وتوانایی این روش است.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023