حل معادلات انتگرو-دیفرانسیل فردهلم غیرخطی از مرتبه کسری با استفاده از موجک چبیشف نوع دوم
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه
- نویسنده محسن رحمانی
- استاد راهنما حمید صفدری حمید مسگرانی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1392
چکیده
در این پایان نامه ابتدا موجک چبیشف نوع دوم را می سازیم. سپس یک روش محاسباتی را بر مبنای موجک چبیشف نوع دوم برای حا رده ای از معادلات انتگرو-دیفرانسیل فردهلم غیرخطی از مرتبه کسری ارایه می دهیم. عملگر انتگرال کسری ریمان-لیوویل ساخته می شود. تعریف کپیتو از عملگر دیفرانسیل کسری بیان می شود. ماتریس عملگر موجک چبیشف نوع دوم از عملگر انتگرال کسری ساخته می شود. سپس ماتریس عملگر انتگرال کسری بین می شود. و در نهایت به حل معادله انتگرو-دیفرانسیل غیر خطی از مرتبه کسری پرداخته می شود. و مثال های عددی را با روش موجک cas مقایسه می کنیم.
منابع مشابه
حل عددی معادلات انتگرال دیفرانسیل ولترای غیرخطی و از مرتبه کسری با استفاده از موجک چبیشف نوع دوم
حساب کسری، تعمیم مشتق وانتگرال از مرتبه غیر صحیح است که بطور گسترده در مسائل مهندسی و مدل های علمی مورد استفاده قرار گرفته است. در این پژوهش ما به توصیف مشتق از مرتبه کسری در حالت کاپوتو ، به منظور ارائه ماتریس عملیاتی انتگرال از مرتبه کسری موجک های چبیشف نوع دوم(scw) پرداخته ایم و سپس با استفاده از روشی که بر اساس ماتریس عملیاتی موجک چبیشف نوع دوم است به حل عددی معادلات انتگرال – دیفران...
15 صفحه اولبهکارگیری موجک چبیشف نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم
در این مقاله، حل عددی معادلات انتگرال فردهلم فازی نوع دوم با بهکارگیری موجک چبیشف نوع دوم را مورد بررسی قرار میدهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگیهای اولیه موجک چبیشف نوع دوم، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دوم، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی مینماییم. سپس با بهکارگیری موجک چبیشف نوع دوم و به...
متن کاملیک روش موجک cas برای حل معادلات انتگرال-دیفرانسیل فردهلم غیرخطی از مرتبه کسری
نظریه موجک یک شاخه جدید و در حال ظهور در تحقیقات ریاضی است. در آنالیز سیگنال برای نمایش شکل موج و آنالیز فرکانس-زمان از نظریه موجک به طور گسترده استفاده شده است موجک ها یک خانواده از توابع ساخته شده از انبساط وانتقال یک تابع که موجک مادر خوانده می شود می باشند. موجکی که در این تحقیق مورد استفاده قرار گرفته است موجک cas است که دارای خصوصیات متعامد یکه و محمل فشرده است. معادلات انتگرال-دیفرانسیل ...
15 صفحه اولحل معادلات دیفرانسیل کسری با روش تبدیل دیفرانسیل و حل معادلات انتگرو-دیفرانسیل کسری با استفاده از برخی موجک ها
چکیده بسیاری از مسائل مهم فیزیکی و مکانیکی به معادلات انتگرو-دیفرانسیل منجر می شوند، ولی در عمل تعداد کمی از این معادلات را می توان به روش تحلیلی حل کرد و جواب دقیق آن ها را بدست آورد. بنابراین از روش های عددی برای محاسبه جواب تقریبی آن ها استفاده می کنیم. در این پایان نامه از موجک های سینوس-کسینوس و ماتریس عملیاتی آن برای بدست آوردن جواب عددی معادلات انتگرو-دیفرانسیل غیرخطی از مرتبه کسری است...
15 صفحه اولبهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
متن کاملحل عددی معادلات انتگرال-دیفرانسیل فردهلم-ولترای-همرشتاین غیرخطی با استفاده از توابع بسل
در این مقاله، روش هم محلی بر پایه چندجمله ای های بسل را برای حل معادلات انتگرال-دیفرانسیل فردهلم-ولترا-همرشتاین غیرخطی با شرایط آمیخته به کار می بریم. در این روش، معادلات انتگرال- دیفرانسیل فردهلم- ولترای- همرشتاین غیرخطی با به کارگیری چند جمله ای های بسل نوع اول و نقاط گره ای تبدیل به معادله ای ماتریسی می شود. معادله ماتریسی متناظربا یک دستگاه معادلات غیرخطی جبری با ضرایب نامعلوم بسل است. نت...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023