مشخصه سازی عملگرهای دو خطی روی جبرهای باناخ و کاربرد هایی از آن

پایان نامه
چکیده

در این پایان نامه به مطالعه مشخصه سازی عملگرهای دو خطی روی جبرهای باناخ می پردازیم، زیرا بررسی شرایطی جهت مشخصه سازی نگاشت های خطی به طور موثر، با در نظر گرفتن نگاشت های دو خطی که روی ضرب های خاصی عمل می کنند، امکان پذیر است. و نیز به عنوان نتایج و کاربردی از مطالب گفته شده به تعمیم مشخصه سازی ها روی فضاهای باناخ خاص و فضاهای شبکه ای، که روی رده ای معین از ضرب ها عمل می کنند، می پردازیم .

منابع مشابه

نگاشت‌های نگهدارنده جفت‌های عملگری باناخ روی جبرهای عملگری

فرض کنید ‎$mathcal{B(X)}$‎ جبر شامل تمام عملگرهای خطی کران‌دار روی فضای باناخ ‎$mathcal{X}$‎ و ‎$phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$‎ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر ‎$A in mathcal{B(X)}$‎ و ‎$x in mathcal{X}$‎، اسکالرهای ‎$alpha‎ , ...

متن کامل

عملگرهای پایا روی بعضی از جبرهای باناخ

فرض کنید g یک گروه هاسدورف و فشرده موضعی و? یک زیر گروه بسته از g×g باشد در این پایان نامه مفهوم جابه جایی نسبت به یک زیر گروه بسته که یک نتیجه کلی از ضرب گرهاست معرفی می شود و عملگرها روی l^2 (g) که با انتقال جابه جا می شوند را مشخص می سازیم هرگاه g میانگین پذیر شود. نشان می دهیم که اگر t عملگر خطی ضعیف ستاره-ضعیف ستاره پیوسته روی l^? (g) باشد در این صورت t با عملگرهای مزدوج جابه جا می شود اگر...

15 صفحه اول

جبرهای باناخ انقباض پذیر

فرض کنید یک جبر باناخ باشد. ما نشان می دهیم که اگر یک ایده ال انقباض پذیر ازیک جبر باناخ باشد آنگاه برقرار است. سپس وجود یک خود توان می نیمال مرکزی را در یک جبر باناخ انقباض پذیرکه یک تابعک ضربی نا صفر روی آن موجود باشد ثابت می کنیم. همچنین مفهومb- انقباض پذیری و یکی از فرم های معادل آن را معرفی می کنیم و با مثالی نشان می دهیم که b- انقباض پذیری به طور اکید از انقباض پذیری ضعیف تر است.

متن کامل

مرکز توپولوژیکی ضعیف از دوگان دوم جبرهای باناخ

در این مقاله برای اولین بار مفهوم جدیدی به عنوان مرکز توپولوژیکی ضعیف چپ و راست برای دوگان دوم جبرهای باناخ a ، را تعریف کرده و رابطۀ آن را با آرنز منظم پذیری بررسی می کنیم.

متن کامل

برد رده هایی خاص از مشتق ها روی جبرهای باناخ

در این پایان نامه کوشش خواهیم کرد که علاوه بر ارائه اطلاعاتی مفید و قضایایی مهم در رابطه با حدس سینگر-ورمر و بیان تعمیم های مختلفی از آن در جبرهای باناخ به صورت کلی، در حالت خاص نیز به بررسی این حدس در مورد مشتق های درونی، درونی تعمبم یافته و تعمیم یافته، پرداخته و نتایج مهمی را نیز در این راستا ارائه نماییم.

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه کردستان - دانشکده علوم

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023