درباره ی کران های عددرنگی وقوعی گراف ها
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم
- نویسنده سحر جمشیدی
- استاد راهنما حمیدرضا میمنی علی زعیم باشی
- سال انتشار 1393
چکیده
عدد رنگی وقوعی گراف ساده و همبند g برابر است با عدد رنگی راسی گراف وقوعی g. در این پایان نامه تعاریف معادل و مختلفی از عدد رنگی وقوعی گراف آمده است و ارتباط عدد رنگی وقوعی گراف با عدد ستاره ی گراف ، عدد رنگی یالی قوی گراف و چند پارامتر دیگر از گراف آمده است . چند کران بالا و پایین برای این پارامتر بیان شده است و عدد رنگی وقوعی برخی گراف های خاص چون گراف مسیر ، دور ، چرخ ، مسطح ، گراف کامل ، درخت محاسبه شده است و چند کران بالا برای عدد رنگی وقوعی حاصلضرب ، مربع و الحاق گرافها آمده است .
منابع مشابه
مروری بر رنگ آمیزی وقوعی گراف ها
رنگ آمیزی وقوعی یکی از انواع رنگ آمیزی گراف ها است. در گراف g مجموعه وقوع ها عبارت از مجموعه ی زوج های مرتب (v.e) است که در آن رأس v بر یال e واقع شده است. دو وقوع (v,e) و (w,f) را مجاور گویند هرگاه w=v یا e=f و یا یال vw برابر e یا f باشد. یک k-رنگ آمیزی وقوعی از گراف g را که با نمایش می دهیم، عبارت است از کوچکترین kایی که g دارای یک k- رنگ آمیزی وقوعی باشد. در این پایان نامه به مطالعه ی رنگ...
مروری بر رنگ آمیزی وقوعی گراف ها
رنگ آمیزی وقوعی یکی از انواع رنگ آمیزی گراف ها است. در گراف g مجموعه وقوع ها عبارت از مجموعه ی زوج های مرتب (v.e) است که در آن رأس v بر یال e واقع شده است. دو وقوع (v,e) و (w,f) را مجاور گویند هرگاه w=v یا e=f و یا یال vw برابر e یا f باشد. یک k-رنگ آمیزی وقوعی از گراف g را که با نمایش می دهیم، عبارت است از کوچکترین kایی که g دارای یک k- رنگ آمیزی وقوعی باشد. در این پایان نامه به مطالعه ی رنگ...
درباره ی بعد متریک گراف ها
برای مجموعه مرتب شده $ w = lbrace w_{1}, w_{2},...,w_{k} brace $ از رئوس و رأس $ v $ در گراف همبند $ g $، نمایش $ v $ نسبت به $ w $، بردار $ k $-تایی egin{center} $ c_{w} = (d(v,w_{1}), d(v,w_{2}),.., d(v,w_{k}) ) $ end{center} است که $ d(x,y) $ نمایش فاصله بین دو رأس $ x,y $ است. مجموعه $ w $ جداکننده ای برای $ ...
15 صفحه اولبررسی کران ها برای مقادیر ویژه گراف
در این پایان نامه به مطالعه ی مقادیر ویژه ی گراف ها پرداخته و کران های بالا و پائین برای مقادیر ویژه ی گراف را مطالعه خواهیم کرد. هم چنین به اختصار به بررسی کران های بالا و پائین مقادیر ویژه ی لاپلاسین گراف خواهیم پرداخت.
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023