حل عددی معادلات انتگرال فردهلم تابعی با استفاده از درونیابی

پایان نامه
چکیده

چکیده در این پایان نامه ابتدا درونیاب اسپلاین مکعبی را بیان می کنیم.سپس با استفاده از روشی که مبتنی بر درونیابی اسپلاین مکعبی و انتگرال گیری عددی است به حل عددی معادلات انتگرال فردهلم تابعی می پردازیم. روش کار چنین است که ابتدا یک تابع اولیه دلخواه برای جواب مسئله در نظر می گیریم. سپس با جایگذاری این تابع در تابع مجهول مسئله با استفاده از تقریب های متوالی به ترتیب تقریب های دیگر تابع مجهول را به دست می آوریم.البته در خلال این کار از انتکرال گیری ذوزنقه ای استفاده می کنیم. و تابع مجهول زیر انتگرال را نیز درونیابی اسپلاین مکعبی می کنیم و مقادیر آن را در نقاط غیرگره ای با استفاده از این درونیابی به دست می آوریم. سپس همگرایی روش را بررسی می کنیم ودر آخر کارایی ودقت روش را با مثال های عددی مورد ارزیابی قرار می دهیم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

حل معادلات انتگرال فردهلم با استفاده از توابع چندمقیاسی برنشتاین

در این مقاله، روش های عددی کارا برای پیدا کردن جواب معادلات انتگرال فردهلم خطی و غیرخطی نوع دوم بر اساس پایه توابع چند مقیاسی برنشتاین ارائه می شوند. در ابتدا، ویژگی های این توابع که به صورت ترکیب خطی از توابع بلاک پالس بر بازۀ (1، 0] و چندجمله ای های برنشتاین هستند به همراه  ماتریس عملیاتی دوگان آن ها ارائه می شوند. سپس از این ویژگی ها برای تبدیل معادلۀ انتگرال مورد نظر به معادله ای ماتریسی هم...

متن کامل

‏به‌کارگیری موجک چبیشف‏ نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم

در این مقاله‏، حل عددی معادلات انتگرال فردهلم فازی نوع دو‏م با به‌کارگیری موجک چبیشف‏ نوع دوم را مورد بررسی قرار می‌دهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگی‌های اولیه موجک چبیشف‏ نوع دوم‏، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دو‏م‏، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی می‌نماییم. سپس با به‌کارگیری موجک چبیشف‏ نوع دوم و به...

متن کامل

حل عددی معادلات انتگرال-دیفرانسیل فردهلم-ولترای-همرشتاین غیرخطی با استفاده از توابع بسل

در این مقاله، روش هم محلی بر پایه چندجمله ای های بسل را برای حل معادلات انتگرال-دیفرانسیل فردهلم-ولترا-همرشتاین غیرخطی با شرایط آمیخته به کار می بریم. در این روش، معادلات انتگرال- دیفرانسیل فردهلم- ولترای- همرشتاین غیرخطی با به کارگیری چند جمله ای های بسل نوع اول و نقاط گره ای تبدیل به معادله ای ماتریسی می شود. معادله ماتریسی متناظربا یک دستگاه معادلات غیرخطی جبری با ضرایب نامعلوم  بسل  است. نت...

متن کامل

حل عددی معادلات انتگرال با استفاده از درونیابی گاوسی

در این پایان نامه یک نقریب عددی بر اساس روش درونیابی گاوسی برای حل معادله انتگرال فردهلم نوع دوم معادله انتگرال غیر خطی از نوع همرشتاین و معادله انتگرال ولترای نوع دوم به دست می آوریم. همچنین همگرایی روش گاوسی را به طور تحلیلی مورد مطالعه قرار می دهیم. برای نشان دادن دقت و کارایی روش روش گاوسی برای معادلات ذکر شده به کار برده شده است.

15 صفحه اول

روش محاسباتی برای حل معادلات انتگرال ولترا- فردهلم ترکیبی غیرخطی

در این مقاله، حل معادلات انتگرال ولترا - فردهلم ترکیبی غیرخطی، بااستفاده ازتوابع بلاک - پالس اصلاح شده سه بعدی(m3d-bfs) بررسی شده است. این روش معادلات انتگرال ولترا - فردهلم ترکیبی غیرخطی را به دستگاه معادلات غیرخطی جبری تبدیل می کند. شرح مثال ها گویای کارایی و سادگی روش ارایه شده می باشد.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023