کاربرد ماتریس عملیاتی ژاکوبی مشتقات کسری برای حل معادلات دیفرانسیل کسری

پایان نامه
چکیده

هدف در این پایان نامه یافتن روشی مناسب برای حل معادلات دیفرانسیل کسری چندمرتبه ای خطی و غیرخطی با مقادیر اولیه و مرزی، است. بدین منظور ابتداچندجمله ای های ژاکوبی انتقال یافته را معرفی و ویژگی های مفید آنها را مورد مطالعه قرار می دهیم. به منظور پیاده سازی روش طیفی روی معادله دیفرانسیل کسری که مشتق آن از نوع کاپوتو است ابتدا نیاز داریم ماتریس عملیاتی مشتقات کسری را بدست می آوریم. پس برای یافتن جواب معادلات دیفرانسیل کسری خطی از روش طیفی تائو و برای معادلات دیفرانسیل کسری غیرخطی از روش هم مکانی بهره خواهیم جست. در انتها کارایی و دقت روش بکارگرفته شده در پایان نامه به کمک چندمثال عددی مورد آزمون قرارگرفته است.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

حل عددی معادلات دیفرانسیل کسری با استفاده از ماتریس های عملیاتی چندجمله ای های ژاکوبی

در این پایان نامه، ماتریس های عملیاتی مشتق کسری کاپوتو و انتگرال کسری ریمان - لیوویل چندجمله ای ژاکوبی در نظر گرفته شده است. با‎‎ استفاده از روش های طیفی و نقطه گذاری با کمک ریشه های چندجمله ای ژاکوبی به حل معادلات دیفرانسیل خطی و غیرخطی می پردازیم. این ماتریس ها به همراه روش تاو مساله اصلی را به یک دستگاه معادلات جبری خطی یا غیرخطی تبدیل می کنند. معادلات دیفرانسیل کسری خطی و غیرخطی از نظر عددی...

15 صفحه اول

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

متن کامل

حل معادلات دیفرانسیل کسری به کمک ماتریس های عملیاتی

در این پایان نامه ابتدا به معرفی توابع حساب کسری و برخی از خواص آنها پرداخته ایم،سپس به مفاهیم مشتق و انتگرال از مرتبه غیر صحیح، خواص و ارتباط بین آنها پرداخته ایم.همچنین چندجمله ای های برنشتاین و چندجمله ای های لاگر به همراه برخی ویژگی های مهم آنها و قضایایی برای تقریب توابع با استفاده از این چندجمله ای ها مطرح نموده ایم. در ادامه ماتریس های عملیاتی انتگرال مرتبه کسری ریمان - لیوویل و ماتریس ه...

بررسی پایداری طرح تفاضلات متناهی غیر استاندارد برای حل معادلات دیفرانسیل با مشتقات نسبی از مرتبه کسری

عملگر های مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبه دلخواه می باشد. معادله دیفرانسیل با مشتقات نسبی) (pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادله دیفرانسیل با مشتقات نسبی کسری ( (fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای بدست آوردن یک طرح عددی، مشتقات...

متن کامل

استفاده از توابع مونتز لژاندر و ژاکوبی کسری برای حل عددی معادلات دیفرانسیل کسری

معادلات دیفرانسیل مرتبه ی کسری برای شرح و توصیف بهتر بسیاری از فرایندهای فیزیکی و مهندسی استفاده می شوند. یکی از اهداف این تحقیق، ساختن توابع ژاکوبی و لژاندر مرتبه ی کسری و به دست آوردن ماتریس عملیاتی مشتق کسری برای این توابع متعامد است. به همین منظور، ابتدا چند جمله ایهای ژاکوبی و لژاندر و ویژگی های آن ها را همراه با مشتق و انتگرال کسری و سری تیلور کلاسیک و سری تیلور کسری مورد مطالعه قرار می د...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023