پیش بینی خشکسالی با استفاده از روش های شبکه های عصبی مصنوعی و سیستم استنتاج فازی-عصبی تطبیقی در حوزه آبخیز مند استان فارس

پایان نامه
چکیده

تقاضای چشمگیر فزاینده برای مصرف آب ناشی از رشد جمعیت از یک سو، و منابع آب محدود از سوی دیگر، کمبود آب را به مسئله¬ای حیاتی در کشورمان تبدیل می¬نماید. بنابراین پیش¬بینی خشکسالی برای مدیریت مصرف بهینه آب، سیستم¬های آبیاری و مدیریت بهره¬برداری از مخازن ضروری است. در سالهای اخیر، توجه زیادی به استفاده از روش¬های هوش مصنوعی جهت مدلسازی فرآیند¬های هیدرولوژیکی دارای پیچیدگی و عدم قطعیت بالا معطوف شده است. در این پژوهش کارایی شبکه¬های عصبی مصنوعی(ann) وسیستم استنتاج عصبی- فازی تطبیقی (anfis) برای پش¬بینی خشکسالی حوزه مند براساس داده¬های ماهانه برای یک دوره آماری 33 ساله شامل بارندگی، دما و شاخص¬های خشکسالی spi و pn بطور مقایسه¬ای مورد ارزیابی قرار گرفته است. همچنین 70 درصد داده جهت آموزش و 30 درصد داده جهت آزمون مدل تعیین شد. برای ارزیابی کارایی مدل¬های ann و anfis از معیارهای آماری ضریب ناش(e)، ضریب همبستگی(r) و ریشه دوم میانگین مربعات خطا (rmse) استفاده گردید. نتایج حاصله نشان دهنده دقت بالاتر مدل ann نسبت به مدل anfis به منظور پیش¬بینی خشکسالی حوزه مند می¬باشد.

منابع مشابه

پیش‌بینی خشکسالی با بکار‌گیری از مدل‌های شبکه عصبی مصنوعی و سیستم استنتاج عصبی‌-‌ فازی تطبیقی در حوزة مُند استان فارس

   امروزه خشکسالی یک معضل جدّی و گریبانگیر دربسیاری از کشور­های جهان است؛بنابراین پیش­بینیِ آن از اهمیت به‌سزایی برخوردار می­باشد. در این تحقیق، کارایی شبکة عصبی مصنوعی و سیستم استنتاج عصبی­- ­فازیتطبیقی به عنوان روش­هایی مؤثر برای پیش­بینی شدت خشکسالی حوزة "مُند" استان فارس مورد بررسی قرار گرفت. برای این منظور از داده­های بارندگی ماهانة ایستگاه باران‌سنجی تنگاب استان فارس با دورة آماری 32 ساله اس...

متن کامل

پیش بینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی

مدل‏های مفهومی بر مبنای هوش مصنوعی، اغلب برای پیش بینی‏های کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیش بینی ها1 (esp) و تفکیک مدل‏سازی برای متغیرهای اقلیمی و هیدرولوژیکی، از مدل‏های مفهومی برای پیش بینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده می شود. سیستم استنتاج فازی برای پیش بینی بارش فصلی به صور...

متن کامل

پیش‌بینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی

مدل‏های مفهومی ‌بر مبنای هوش مصنوعی، اغلب برای پیش‌بینی‏های کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیش‌بینی‌ها1 (ESP) و تفکیک مدل‏سازی برای متغیرهای اقلیمی‌و هیدرولوژیکی، از مدل‏های مفهومی ‌برای پیش‌بینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده می‌شود. سیستم استنتاج فازی برای پیش‌بینی بار...

متن کامل

مدل‌سازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی و شبکه فازی- عصبی تطبیقی در حوزه آبخیز کسیلیان

     Rainfall runoff modeling and prediction of river discharge is one of the important practices in flood control and management, hydraulic structure design and drought management. The present article aims to simulate daily streamflow in Kasilian watershed using an artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS). The intelligent methods have the high potential for dete...

متن کامل

پیش‌‌بینی جریان روزانه رودخانه اهرچای با استفاده از روش های شبکه های عصبی مصنوعی (ANN) و مقایسه آن با سیستم استنتاج فازی- عصبی تطبیقی (ANFIS)

در طی سال‌های اخیر پیش‌‌بینی فرآیندهای هیدرولوژیکی به منظور بهره‌برداری پایدار از منابع آب با استفاده از روش‌‌های هوشمند مورد توجه دست اندرکاران بخش آب قرار گرفته است. در این تحقیق با بهره‌‌گیری از شبکه‌‌های عصبی مصنوعی (ANN) و سیستم استنتاج فازی- عصبی تطبیقی (ANFIS) اقدام به پیش‌‌بینی دبی جریان روزانه رودخانه اهر چای واقع در استان آذربایجان شرقی در ایستگاه های اورنگ، برمیس و تازه کند گردید. بر...

متن کامل

پیش بینی جریان روزانه رودخانه اهرچای با استفاده از روش های شبکه های عصبی مصنوعی (ann) و مقایسه آن با سیستم استنتاج فازی- عصبی تطبیقی (anfis)

در طی سال های اخیر پیش بینی فرآیندهای هیدرولوژیکی به منظور بهره برداری پایدار از منابع آب با استفاده از روش های هوشمند مورد توجه دست اندرکاران بخش آب قرار گرفته است. در این تحقیق با بهره گیری از شبکه های عصبی مصنوعی (ann) و سیستم استنتاج فازی- عصبی تطبیقی (anfis) اقدام به پیش بینی دبی جریان روزانه رودخانه اهر چای واقع در استان آذربایجان شرقی در ایستگاه های اورنگ، برمیس و تازه کند گردید. برای مد...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه زابل - دانشکده فیزیک

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023