نامساوی هایی در توابع s-محدب و کاربرد آنها
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم پایه
- نویسنده لیلا زارعی
- استاد راهنما رسول آقالاری
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1393
چکیده
برخی نتایج جدید مربوط به نامساوی هرمیت هادامارد برای کلاسی از توابع که دومین مشتقات توانی معین آنها، توابع-s محدبی در دومین مفهوم هستند، بدست آمده اند. و همچنین، برخی از کاربرد های میانگین های خاص از اعداد حقیقی نیز اثبات شده است.
منابع مشابه
بهبودهایی از نامساوی های توابع محدب هندسی برای عملگرها
در این مقاله، تظریفی از تابع محدب هندسی ارائه که به کمک آن چندین نامساوی شناخته شده از توابع محدب هندسی بهبود داده شده است. در پایان نیز نامساویهای بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است. نیز نامساویهای بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است.
متن کاملنامساوی هادامارد برای توابع لگاریتم محدب
در این پایان نامه تابع محدب و همچنین توابعی از نوع محدب مانند m - محدب و (a,m) - محدب و s - محدب و از قبیل این توابع به خصوص توابع لگاریتم محدب را معرفی می ناماید و به اثبات نامساوی هادامارد برای این توابع می پردازد.
15 صفحه اولنامساوی استراوسکی برای توابعی با مشتق s-محدب نوع دوم
نامساوی استراوسکی یکی از نامساویهای کاربردی است که دانشمندان سعی در تعمیم آن داشته ودارند.در این رساله ابتدا این نامساوی را اثبات وسپس آن را برای توابع s-محدب وهمچنین توابعی با مشتق s-محدب نوع دوم تعمیم میدهیم.ودر نهایت کاربردهایی از این نامساوی را برای میانگینهای خاص ازجمله میانگین حسابی ومیانگین تعمیم یافته لگاریتمی بیان و اثبات مینماییم.
رده بندی توابع محدب با استفاده از نامساوی هرمیت-هادامارد
توابع محدب یکی از مهمترین توابع در ریاضیات می باشند.رده بندی این نوع توابع اهمیت ویژه ای دارد و ریاضیدانان زیادی در این زمینه مشغول به مطالعه و تحقیق هستند.در این رساله ابتدا تعاریف و قضایای مقدماتی مطرح می شود.سپس به رده بندی توابع یک متغیره ی محدب روی بازه های باز با استفاده از نامساوی هرمیت هادامارد پرداخته می شود.در ادامه به رده بندی توابع چند متغیره ی محدب روی زیر مجموعه های rn می پردازیم.
15 صفحه اولنامساوی پوپویچی برای توابع ماتریسی با توان منفی
در این مقاله، با استفاده از مقادیر ویژه ماتریسها و نامساوی عددی پوپویچی، این نامساوی برای اثر ماتریسهای مثبت بیان شده است. به علاوه، با در نظر گرفتن توابع ماتریسی با توان منفی، نامساویهای ماتریسی از نوع پوپویچی به دست آمده است. نتایج به دست آمده در این مقاله، معکوس نامساویهای ماتریسی شناخته شده هستند.
متن کاملالگوریتم هایی برای محاسبه بزرگترین مقسوم علیه مشترک و کاربرد آنها در حل معادلات دیوفانتی خطی
یکی از مراحل مهم در حل دستگاههای دیوفانتی خطی، محاسبه بزرگترین مقسوم علیه مشترک چند عدد صحیح است. الگوریتم اقلیدس اغلب به عنوان یکی از الگوریتم های موثر برای محاسبه بزرگترین مقسوم علیه مشترک دو عدد صحیح استفاده می شود. با ادغام الگوریتم اقلیدس با یک روند تکراری می توان آن را برای محاسبه بزرگترین مقسوم علیه مشترک چند عدد صحیح نیز به کار برد. در این مقاله به بررسی چند الگوریتم برای محاسبه بزرگتری...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم پایه
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023