رنگ آمیزی جمعی گراف ها

پایان نامه
چکیده

فرض کنیمg یک گراف همبند نابدیهی باشد. برای رأسv از گراف g، مجموعه رأس های مجاور بهv را با n(v) نشان می دهیم. فرض کنید که c? v(g) ? nیک رنگ آمیزی رأسی ازg باشد که رأس های مجاور ممکن است، رنگ های یکسانی داشته باشند. ?(v)، مجموع رنگ های رئوسn(v) است. اگر برای هر دو رأس مجاورu وv داشته باشیم ?(u)??(v)، آن گاهc را یک رنگ آمیزی جمعی ازg می نامیم. مینیمم تعداد رنگ های مورد نیاز در یک رنگ آمیزی جمعی ازg را عدد رنگی جمعی نامیم و با?(g) نمایش می دهیم. عدد رنگی جمعی گراف g، هرگز از عدد رنگی?(g) تجاوز نمی کند و برای هر جفتa وb از اعداد صحیح مثبت که a?b، یک گراف همبند مانندg وجود دارد که?(g)=a و ?(g)=b. فرض کنیدk وn اعداد صحیح مثبتی باشد که k?n. یک گراف گراف همبندg از مرتبه یn وجود دارد که ?(g)=k، اگر و تنها اگر k?n-1. چندین نتیجه ی دیگر نیز راجع به عدد رنگی جمعی ارائه شده است. برای یک k-رنگ آمیزی جمعی c از گراف g، برد جمعی از g، کوچک ترین عدد صحیح مثبت k است، به طوری که یک k-رنگ آمیزی جمعی c از g با استفاده از رنگ های متعلق به مجموعه ی{1,2,…,k} وجود داشته باشد که آن را با?(g) نمایش می دهیم. ثابت می کنیم برای هر گراف مسطح g، ?(g)?468. این بهبود یافته ی کران قبلی ?(g)?5544 است که توسط نورین حاصل شد. در اثبات از قضیه ی صفرهای ترکیبیاتی و عدد رنگ آمیزی ابرگراف ها استفاده می کنیم. ما هم چنین ثابت می کنیم که برای گراف های مسطح 3-رنگ پذیر، ?(g)?36 و برای هر گراف مسطح با کمر حداقل 13، ?(g)?4. ما ثابت می کنیم که برای هر r?2، یک گراف g_r با عدد رنگی r، وجود دارد که هیچ رنگ آمیزی جمعی روی یک گروه آبلی متناهی از مرتبه ی r، ندارد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

رنگ آمیزی پویای گراف ها

در این پایانامه سعی می کنیم به ارتباط بین عدد رنگی و عدد رنگی پویای گراف ها در حالت خاص بپردازیم, علاوه بر آن عدد رنگی پویای انتخابی(لیستی) را معرفی کرده و بعضی از نتایج آن را بیان می کنیم.

رنگ آمیزی پویای گراف ها

یک k رنگ آمیزی گراف g را رنگ آمیزی پویا می نامند, اگر در همسایه های هر رأس آن با حداقل درجه دو, حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k را به طوری کهg دارای یک k-رنگ آمیزی پویا باشد, عدد رنگی پویای g می نامند. در این پایان نامه به بررسی مفهوم رنگ آمیزی پویا, عدد رنگی پویای برخی گراف های خاص و کران بالای عدد رنگی پویا که در مقاله lai, h. j.,b. montgomery, h. poon, (2003), upper bounds ...

15 صفحه اول

رنگ آمیزی وقوع گراف ها

فرض کنیم (g=(v,eیک گراف ساده با مجموعه رئوس (v(gو مجموعه یال های (e(gباشد. vرارأسی دلخواه در gدر نظر میگیریم که واقع بر یال eباشد. زوج (v,e)را یک وقوع در گراف می نامیم. مجموعه ی همه ی وقوع ها در گراف را با(i(g نمایش می دهیم. دو وقوع مجزای (v,e) و (w,f)را در گراف مجاور گوییم هرگاه یکی از حالات زیر رخ دهد: الف) v=w: ب)e=f: ج)یال vw برابر با e یا f باشد. رنگ آمیزی وقوع در گراف را نگاشتی از مجموع...

15 صفحه اول

رنگ آمیزی همیلتونی گراف ها

برای رئوس u وv از گراف همبندg با مرتبه n، طول بلندترین u-v مسیر درg به وسیله d(u،v) نشان داده می شود. رنگ آمیزی هامیلتونی c از گرافg برچسب گذاری برای رئوس موسوم به رنگ است، به طوری که برای هر دو رأس متفاوت u وv از گرافg داشته باشیم: d(u،v)+|c(u)-c(v)|?n-1. مقدار hc(c) رنگ آمیزی هامیلتونی cاز گراف g، بیشترین رنگ اختصاص داده شده به یک رأس از g توسط c است، و عدد رنگی هامیلتونی g که آن را با hc(...

15 صفحه اول

رنگ آمیزی کامل گراف ها

در این رساله به بررسی گراف های تمام رنگ پذیر و خصوصیات آن ها می پرازیم. در بعضی از گراف های خاص درستی حدس رنگ آمیزی کلی را نشان می دهیم و کران های بالایی برای عدد رنگی کلی مطرح می کنیم. مبحث اصلی مورد مطالعه در این رساله، بررسی گراف های یکتا رنگ پذیر کلی می باشد. حدس مهمی که در این زمینه مطرح می شود دلالت بر این دارد که تنها گراف های تهی، مسیرها و دورهای از مرتبه ی 3k، k یک عدد طبیعی است، در رد...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023