مطالعه ی بعدهای همولوژیکی مدول های کوهمولوژی موضعی آرتینی

پایان نامه
چکیده

فرض کنید r یک حلقه ی جابه جایی یکدار نوتری و m یک r-مدول یکانی باشد. در این پایان نامه بُعدهای همولوژیکی مدول های کوهمولوژی موضعی آرتینی را مورد مطالعه و بررسی قرار می دهیم. برای این کار ابتدا مطالبی در مورد مدول های کوهمولوژی موضعی، فانکتورهای تاب و توسیع ارایه می دهیم. سپس بُعدهای انژکتیو و مُسطح را از دیدگاه های متفاوت مورد بررسی قرار می دهیم. بطور خلاصه نشان می دهیم اگر (r,m) یک حلقه موضعی نوتری و m یک r-مدول غیرصفر با تولید متناهی باشد، آن گاه، به ازای هر p? spec(r) ، بُعدهای ?fd?_rp h_prp^(i-dim?(r/p)) (m_p) و ?injdim?_rp h_prp^(i-dim?(r/p)) (m_p) از بالا کراندار هستند. همچنین این کران را برای هر i?dim?(r/p) مشخص می کنیم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اصل موضعی-فراموضعی برای آرتینی بودن مدول های کوهمولوژی موضعی

فرض کنید r یک حلقه جابجایی و نوتری، i یک ایده آل سره از r و m یک r-مدول متناهی مولد باشد. مدول i-امین کوهمولوژی m نسبت به ایده آل i را با hii(m) نشان می دهیم. در این پایان نامه نشان داده می شود که یک اصل موضعی-فراموضعی برای مدول کوهمولوژی موضعی hii(m) وجود دارد که به قرار زیر است. برای هر عدد صحیح و مثبت مانند n ، hii(m) برای تمام iهایی که i < n آرتینی است اگر و تنها اگر برای تمام iهایی که i...

اصل موضعی - کلی برای آرتینی بودن مدول های کوهمولوژی موضعی

در این پایان نامه i یک ایده آل از r و m یک r-مدول است. هدف، اثبات قضایای زیر است: 1)فرض کنیم r حلقه موضعی و p ایده آل اول از r و n>=0 یک عدد صحیح باشد. ثابت می کنیم hii(m) برای هرi<n،آرتینی است اگر و فقط اگر hii(m))p برای هر i<n آرتینی باشد. 2) f-عمق i نسبت به m کوچکترین عدد صحیح مانند r است که مدول کوهمولوژی موضعی ( hri(m برای هر i<n آرتینی باشد. 3)یک اثبات ساده برای i-هم متناهی بودن...

ابعاد همولوژیکی مدول های کوهن-مکالی نسبی و کوهمولوژی موضعی

مدول های کوهن-مکالی کلاس مهمی از مدول های نوتری را تشکیل می دهند. بعنوان تعمیمی از این دسته مدول ها، کلاس مدول های کوهن-مکالی نسبی را معرفی می کنیم. در این پایان نامه هدف اصلی ما مطالعه برخی ابعاد همولوژیکی مدول های کوهن-مکالی نسبی و کوهمولوژی موضعی آنها است.

15 صفحه اول

آرتینی و غیرآرتینی بودن مدول های کوهمولوژی موضعی

فرض کنید m یک مدول متناهی مولد روی حلقه نوتری، جابجایی و یکدارr باشد. اگرr موضعی باشد، نشان داده می شود که m کوهن- مکالی تعمیم یافته است، هرگاه یک ایده الa موجود باشد، به طوریکه همه مدول های کوهمولوژی موضعیm ، نسبت به a با طول متناهی باشند. همچنین نشان داده می شود که اگرr یک عدد صحیحی باشد، به طوریکه(m) ??dim?_r 0?rآنگاه هر عضو ماکسیمال مجموعه غیر تهی {a:? نیست آرتینی h?_a^(i ) (m) طوریکه به ...

15 صفحه اول

ایده آل های اول ضمیمه به مدول های کوهمولوژی موضعی و آرتینی مشخص

در این رساله بعد از بیان مقدمات و پیش نیازها، ابتدا نمایش پذیری مدولها را تعریف کرده و سپس به بیان اثبات نمایش پذیربودن مدولهای آرتینی پرداخته و بعد از آن مدولهای کوهمولوژی موضعی را تعریف نموده و سرانجام در فصل سوم با در نظر گرفتن حلقه نوتری و موضعی a با بعد n و ایده آل محض از آن مانند a به اثبات پوچ شدن مدول hia (a) و اینکه این مدول آرتینی است ، پرداخته و در نهایت مجموعه ایده آلهای اول ضمیمه ب...

15 صفحه اول

ویژگی های متناهی بودن و آرتینی بودن مدول های کوهمولوژی موضعی صوری

فرض کنید i یک ایده آل از حلقه جابجایی موضعی نوتری (r,m)، m یک r-مدول متناهی مولد و برای عدد نامنفی i، (f_i^i(m نشان دهنده i-امین مدول کوهمولوژی موضعی صوری m نسبت به ایده آل i باشد . در این پایان نامه بعضی نتایج مربوط به ویژگی های متناهی بودن و آرتینی بودن مدول های کوهمولوژی موضعی صوری را ثابت می کنیم; که نشان می دهد این مدول ها شبیه مدول های کوهمولوژی موضعی رفتار می کنند . به علاوه ثابت می کنی...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده علوم ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023