استفاده از ماتریسهای عملگری برای حل عددی معادلات دیفرانسیل تصادفی و کاربرد آنها در ریاضیات مالی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه یزد - دانشکده ریاضی
- نویسنده هاشمی اصل منا
- استاد راهنما قاسم برید لقمانی رسول روزگار حجت اله صادقی
- سال انتشار 1393
چکیده
یک معادله دیفرانسیل تصادفی معادله ای است که در آن یک یا چند متغییر فرآیند تصادفی هستند. در نهایت جواب این نوع معادلات نیز یک فرآیند تصادفی است. یافتن پاسخ عددی معادلات دیفرانسیل تصادفی به نسبت نسخه های غیرتصادفی زمینه ای بسیار جدید است.در این پایان نامه قصد داریم از توابع پایه، با نام توابع بلاک پالس و ماتریسهای عملگری آنها به منظور حل عددی معادلات دیفرانسیل تصادفی استفاده کنیم. اخیرا این توابع به دلیل سادگی و عملگرهای ساده آنها و همچنین تقریبهای کافی و رضایت بخششان کاربردهای وسیعی برای یافتن جوابهای عددی مسائل گوناگون پیدا کرده اند. پس از آن کاربردهایی از معادلات دیفرانسیل تصادفی در ریاضیات مالی ارائه می شود.
منابع مشابه
پیادهسازی سختافزاری حل عددی معادلات دیفرانسیل روی FPGA
حل عددی معادلات دیفرانسیل با استفاده از بسترهای CPU و GPU مبتنی بر پیادهسازی نرمافزاری است. در سالهای اخیر، راهکار جدیدی مبتنی بر پیادهسازی سختافزاری معادلات با استفاده از بستر FPGA، بهدلیل افزایش سرعت حل و کاهش توان مصرفی، مورد توجه جدی قرار گرفته است. در این پژوهش با حل چند مسئلهی نوعی، شامل سیستم جرم و فنر و معادلهی موج، روش پیادهسازی سختافزاری برای حل معادلات دیفرانسیل بر ر...
متن کاملساختن روشهای تفاضلات متناهی مبتنی بر توابع پایه شعاعی و استفاده از آنها برای حل معادلات دیفرانسیل با هندسه دلخواه
In this paper we, obtain the weight of radial basis finite difference formula for some differential operators. These weights are used to obtain the local truncation error in powers of the inter-node distance and the shape parameter of radial basis functions. We show that for each difference formula, there is a value of the shape parameter for which RBF-FD formulas are more accurate than the cor...
متن کاملحل عددی معادلات دیفرانسیل تصادفی
در این رساله ابتدا مقدماتی از معادلات دیفرانسیل تصادفی و حسابان تصادفی را خواهیم دید و سپس در مورد نتایج اساسی استخراج شده بحث خواهیم کرد.اساسی ترین نتایج این رساله عبارتند از :تعمیم روشهای رانگ - کوتای صریح برای حل عددی معادلات دیفرانسیل تصادفی که در سال 1996 توسط k.burrage و p.m.burrage استخراج شده بودند در واقع در این رساله با استفاده از نظریه درختان ریشه دار و تعمیم آنها به حالت تصا...
15 صفحه اولحل عددی معادلات دیفرانسیل تصادفی
حل عددی مسائل دیفرانسیل معمولی یا جزئی خطی که در آن قسمتی از شرایط اولیه یا کرانه ای یا خود معادله تصادفی باشد از دیرباز مورد توجه پژوهشگران بوده است. تصادفی بودن بدین مفهوم است که وجود برخی اختلالات سبب تبدیل معادله از حالت معین شده ریاضی به تصادفی با ابعاد مختلف شود. مبنای حل این گونه معادلات، تکیه بر اصول خطی سازی و گسسته سازی مسأله است. در اکثر موارد قسمت تصادفی دارای ویژگی حرکت براونی اس...
15 صفحه اولروابط اندازه پذیر و معادلات عملگری تصادفی در فضاهای باناخ
در این مقاله، نگاشت های چندمقداری یا روابط اندازه پذیر را معرفی و ارتباط بین تعاریف مختلف اندازه پذیری آنها را مطالعه می کنیم. موضوع نگاشت های چندمقداری اندازه پذیر در نظریه بازیها و نظریه کنترل کاربرد دارد. مطالب بیان شده را برای بررسی وجود جواب معادلات عملگری تصادفی غیرخطی در فضاهای باناخ به کار می بریم.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه یزد - دانشکده ریاضی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023