تجزیه و تحلیل معادلات دیفرانسیل فازی خطی مرتبه n با بهره جویی از روش تکرار تغییرات

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه ملایر - دانشکده علوم ریاضی
  • نویسنده علی کریمی
  • استاد راهنما خسرو سایوند
  • سال انتشار 1393
چکیده

روش تکرار تغییرات که به وسیله پرفسور جی هوان هی بیان شده،یک روش تحلیلی جدید برای حل معادلات خطی و غیر خطی می باشد.در این پایان نامه،روش تکرار تغییرات در حل معادلات دیفرانسیل فازی خطی مرتبه n با شرایط اولیه فازی به کار گرفته شده است.این روش با حل چندین مثال شرح داده شده است.

منابع مشابه

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

متن کامل

حل عددی معادلات دیفرانسیل فازی خطی مرتبه n ام

معادلات دیفرانسیل فازی یکی از ابزارهای ریاضی است که در مدل و فرآیندهای بیولوژیکی ، مهندسی ، ... به کار رفته است ومعمولا یکی از ابزارهائی که ارتباط بین ریاضیات محض وعلوم فیزیکی ومهندسی را برای دانشجویان میسر می سازد معادلات دیفرانسیل است. در اکثرا شاخه های علوم مخصوصا علوم کاربردی مانند رشته های مهندسی ، فیزیک، اقتصاد، شیمی ، وغیره گاهی به مسائلی برخورد می کنیم که وقتی آنها را به صورت الگوی ریاض...

15 صفحه اول

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

متن کامل

تقریب خطی برای معادلات دیفرانسیل غیر خطی و مسئله پایداری

در این مقالع بعنوان مثال معادله دیفرانسیل گسترش جمعیت تحت مطالعه و نقاط استثنایی (نقاط حل) این معادله از نقطه نظر پایداری و ناپایداری مورد بحث قرار گرفته است . طی این مثال و مثالی دیگر نشان داده شده که همیشه خطی کردن معادلات دیفرانسیل غیر خطی نتیجه مطلوب را نخواهد داد. بالاخره در قسمت آخر تعریفات ریاضی پایداری از نقطه نظر لاپلاس لیاپولف و پوانکاره و شرط کافی برای اینکه بتوان معادله دیفرنسیل غیر...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه ملایر - دانشکده علوم ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023