کاربرد روش عناصر مرزی در حل مسائل بیضوی نیمه خطی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده ریاضی
- نویسنده زینب دهداروند
- استاد راهنما علی ذاکری عظیم امین عطایی
- سال انتشار 1393
چکیده
در این پایان نامه چگونگی تبدیل معادلات دیفرانسیل جزیی از نوع بیضوی به یک معادله ی انتگرال مرزی ارائه می شود. سپس جواب تقریبی مسائل بیضوی نیمه خطی روی دیسک واحد باز به روش عناصر مرزی بررسی می شود. در پایان، بررسی همگرایی و تخمین خطای روش عناصر مرزی گالرکین در نرم های فضای سوبولف مورد بحث قرار می گیرد.
منابع مشابه
توسعه یک الگوریتم نقطه مرزی برای حل مسائل برنامهریزی خطی با جواب اولیه موجه
در این تحقیق برای حل مسائل برنامه ریزی خطی، الگوریتم SALCHOW توسعه داده شده است که در هرگام در جهت گرادیان مقید تابع هدف حرکت میکند بهنوعی که همواره روی مرز ناحیه موجه باقی میماند. این نوع حرکت بر روی مرز ناحیه موجه متفاوت با رفتار الگوریتم سیمپلکس است که روی گوشه های فضای موجه حرکت میکند. از سوی دیگر با رفتار الگوریتم های نقاط درونی هم که از روی مرز فضای موجه جدا شده و وارد آن می شوند، نیز ...
متن کاملروش شبه خطی کردن موجک هار برای حل مسائل غیر خطی تراسچ و براتو
در این مقاله یک روش عددی برای حل مسائل غیر خطی تراسچ و براتو ارائه میکنیم. در این روش از فر آیند شبه خطی کردن و تابع پایهای موجک هار برای تبدیل مسائل غیر خطی به دستگاه معادلات جبری خطی استفاده خواهیم کرد. چند مثال عددی آورده شده است و نتایج عددی بدست آمده از روش ارائه شده را با نتایج حاصل از روشهای تحلیلی و عددی موجود در منابع مختلف مقایسه خواهیم کرد. همچنین نتایج بدست آمده را در قالب جداول ...
متن کاملکاربرد روش مرزی ترفتز در حل مسائل دوبعدی ارتجاعی
این روش ، اولین مرتبه توسط ترفتز در سال 1926 ارائه گردید. روش ترفتز بر دو نوع است : روش غیرمستقیم و روش مستقیم. در روش غیرمستقیم، که در این پایان نامه بکار گرفته شد، پاسخ مساله توسط جمع یکسری توابع، تقریب زده می شود. خاصیت این توابع آن است که معادله دیفرانسیل حاکم بر حوزه مساله توسط آنها ارضاء می گردد. جهت ارضاء تقریبی شرایط مرزی، از روش باقیمانده وزن دار استفاده می گردد و به این ترتیب ضرایب مج...
15 صفحه اولروش شبه طیفی کسری خطی برای حل مسائل مقدار مرزی
در این پایان نامه، نوعی از روش شبه طیفی را برای حل مسائل مقدار مرزی بررسی می کنیم که در این روش عملگر دیفرانسیل با یک ماتریسی که از ماتریسهای مشتق گیری مقدماتی ساخته شده و عناصرش مشتقات چند جمله ای لاگرانژ در نقاط هم محلی می باشد، جایگزین می شود. حل تکراری سیستم معادلات بدست آمده مستلزم کاربرد متناوب و تکراری اتریس مشتق گیری است، ما برای بهبود جواب از پیشنهاد تال ازر و کاسلوف برای تغییر نقاط هم...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده ریاضی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023