شاخص سگد و سگد اصلاح شده یک گراف و مقادیر ویژه متناظر آن ها
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم
- نویسنده نادر حبیبی
- استاد راهنما علیرضا اشرفی مسعود آرین نژاد
- سال انتشار 1393
چکیده
در این رساله پس از تعریف ماتریس مجاورت وزن دار سگد اصلاح شده ی یک گراف، مقادیر ویژه آن مورد بررسی قرار می گیرد. همچنین کران های جدیدی برای پراکندگی طیف لاپلاسی بی علامت یک گراف به دست می آید. در ادامه چند شاخص توپولوژیک برای گراف های سه دوری، چهار دوری و کاکتوس بررسی و همچنین گراف های نظیر برای مقادیر ماکزیمم این شاخص ها ارایه می شود.
منابع مشابه
شاخص اصلاح شده سگد گراف های فولرنی
یک شاخص توپولوژیک برای گرافg ، ثابت عددی است که کمیتی فیزیکی یا شیمیایی را توصیف می کند. این اعداد در شیمی نظری به منظور کدگذاری مولکول ها برای طراحی اجسام شیمیایی با خواص فیزیکی-شیمیایی داده شده و فعالیتهای زیستی و داروشناسی به کار می روند. شاخص سگد در سال 1994 توسط ایوان گوتمن به عنوان تعمیمی از شاخص وینر تعریف شد. کاربردهای این شاخص در مدل سازی ساختارهای نانو و همبستگی آن با برخی شاخص های...
15 صفحه اولرابطه شاخص سگد و شاخص وینر
شاخص وینر گراف g به صورت مجموع فواصل بین همه جفت از رئوس تعریف می شود.شاخص وینر یک ویژگی جالب از ریاضی شیمی است . شاخص سگد ((sz(g ) تعمیمی از شاخص وینر برای همه گراف های همبند می باشد. درمورد درخت ها شاخص سگد با شاخص وینر برابر است. از این رو هر تحقیقی در شاخص سگد معنی دار است اگر و فقط اگر برای گراف های شامل دور به کار برده شود. در محاسبه شاخص سگد، برای یالe=uv تعداد رئوس با فاصله های یکسان از...
15 صفحه اولاندیس های سگد و همبندی از گراف ناجابجایی در گروه های متناهی
فرض کنیم g یک گروه ناآبلی باشد. گراف ناجابجایی $gamma_g$ از g تعریف می شود با مجموعه رئوس g و دو عضو از آن تشکیل یال می دهد اگر باهم جابجا نشوند. در این مقاله ما بعضی از خواص این گراف و ac -گروه n -منظم را معرفی می کنیم. سپس فرمولی برای اندیس سگد گراف ناجابجایی یک گروه متناهی بر حسب اندازه های n و z(g) و g بدست می آوریم. همچنین مشخص می کنیم مقدار اندیس همندی برای هر گروه متناهی برحسب k(g) و اند...
متن کاملمقادیر ویژه و مقادیر ویژه لاپلاسی یک گراف و کاربرد های آن در محاسبه انرژی فولرن
چکیده ندارد.
15 صفحه اولبررسی کران ها برای مقادیر ویژه گراف
در این پایان نامه به مطالعه ی مقادیر ویژه ی گراف ها پرداخته و کران های بالا و پائین برای مقادیر ویژه ی گراف را مطالعه خواهیم کرد. هم چنین به اختصار به بررسی کران های بالا و پائین مقادیر ویژه ی لاپلاسین گراف خواهیم پرداخت.
15 صفحه اولممحاسبه و بررسی مقادیر ویژه ماتریس مجاورت یک گراف و کاربردهای آن
در این پایان نامه ضمن معرفی طیف گراف، قضایا و روش هایی برای محاسبه ی مقادیر ویژه ی ماتریس مجاورت یک گراف ساده در حالت های کلی و خاص ارائه می گردد. در ادامه گراف های صحیح معرفی می شوند و شرایط لازم برای صحیح بودن برخی از گراف ها مورد بررسی قرار می گیرد. همچنین، در انتها کاربردهایی از طیف گراف در علم شیمی و شناختن خواص ساختاری گراف با در دست داشتن طیف گراف ارائه می شود.
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023