پیوستگی مشتق ها، نگاشت های پیچان و همدورها از جبرهای باناخ

پایان نامه
چکیده

فرض کنیم که a یک جبر باناخ و e یک a- مدول باناخ باشد نگاشت خطی s از a به e را پیچان نامیم هر گاه نگاشت دو خطی a*a در نتیجه e، (a,b) درنتیجه a.sb-s(ab)+s(a).b پیوسته باشد. بعنوان مثال اگر جبر باناخ a متناهی مولد باشد آنگاه هر نگاشت خطی از a به e پیچان خواهد شد. در قسمت اول این پایان نامه پیوسته بودن نگاشتهای پیچان را در مورد مطالعه قرار خواهیم داد و نشان داده خواهد شد که اگر هر مشتق از جبرباناخ a به هر a-مدول باناخ پیوسته باشد آنگاه هر نگاشت پیچان نیز از جبر باناخ a به هر a- مدول باناخ پیوسته خواهد شد. در قسمت دیگری از این پایان نامه شرایطی را روی جبر باناخ a، a-مدول باناخ و یکدار e تعیین می کنیم که تحت آن شرایط هر 2- همدور از a*a به e کراندار شود.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مشتق ها روی جبرهای باناخ و توسیع باناخ مدول ها

در این پایان نامه فضای مرکزسازهای دوگانه را برای جبرها و باناخ مدول ها بررسی کرده وآن را به عنوان یک توسیع از جبر یا باناخ مدول اولیه در نظر می گیریم. و از این توسیع در اثبات بعضی قضایای میانگین پذیری استفاده می کنیم به نحوی که اثبات جدید به مراتب از اثبات های قبلی کوتاه تر است.

جبرهای باناخ انقباض پذیر

فرض کنید یک جبر باناخ باشد. ما نشان می دهیم که اگر یک ایده ال انقباض پذیر ازیک جبر باناخ باشد آنگاه برقرار است. سپس وجود یک خود توان می نیمال مرکزی را در یک جبر باناخ انقباض پذیرکه یک تابعک ضربی نا صفر روی آن موجود باشد ثابت می کنیم. همچنین مفهومb- انقباض پذیری و یکی از فرم های معادل آن را معرفی می کنیم و با مثالی نشان می دهیم که b- انقباض پذیری به طور اکید از انقباض پذیری ضعیف تر است.

متن کامل

نگاشت‌های نگهدارنده جفت‌های عملگری باناخ روی جبرهای عملگری

فرض کنید ‎$mathcal{B(X)}$‎ جبر شامل تمام عملگرهای خطی کران‌دار روی فضای باناخ ‎$mathcal{X}$‎ و ‎$phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$‎ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر ‎$A in mathcal{B(X)}$‎ و ‎$x in mathcal{X}$‎، اسکالرهای ‎$alpha‎ , ...

متن کامل

مشتق ها و مشتق های جردن روی جبرهای باناخ

یکی از موضوعات مورد توجه در جبر و آنالیز، مفهوم مشتق و تعمیم هایی از آن روی حلقه ها و جبر های باناخ می باشد. که با توجه به آن می توان نتایجی در مورد این ساختارها بدست آورد. یکی از تعمیم های مشتق، مفهوم مشتق جردن است. هر مشتق یک مشتق جردن است اما عکس آن لزوماً برقرار نیست. این موضوع که تحت چه شرایطی هر مشتق جردن، مشتق است از مسائل مورد توجه می باشد. هراشتاین نشان داده است که روی هر حلقه اول با مش...

15 صفحه اول

مشتق ها روی جبرهای باناخ و توسیع باناخ مدول ها

یکی از مسائل بنیادی در مورد جبرهای باناخ تعیین گروه کوهمولوژی اول آن با ضرایب در یک مدول می باشد‎.‎ به ویژه اینکه چه موقع گروه کوهمولوژی برابر صفر است‎.‎ برای بررسی گروه کوهمولوژی اول یک جبر باناخ با ضرایب در یک مدول و تعمیم های آن اغلب لازم است هر مشتق پیوسته از یک جبر باناخ به هر مدول آن را به مشتق دیگری از یک جبر باناخ که پوششی برای جبر باناخ اول است‎،‎ توسیع دهیم‎.‎ در این پایان نامه مفهوم ...

15 صفحه اول

مرکز توپولوژیکی ضعیف از دوگان دوم جبرهای باناخ

در این مقاله برای اولین بار مفهوم جدیدی به عنوان مرکز توپولوژیکی ضعیف چپ و راست برای دوگان دوم جبرهای باناخ a ، را تعریف کرده و رابطۀ آن را با آرنز منظم پذیری بررسی می کنیم.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران) - دانشکده ریاضی و کامپیوتر

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023