چندتایی های ابردوری از عملگرها

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان فارس - دانشکده علوم پایه
  • نویسنده مریم پیرغیبی
  • استاد راهنما رحمت سلطانی فریبا ارشاد
  • تعداد صفحات: ۱۵ صفحه ی اول
  • سال انتشار 1392
چکیده

یک _nتایی از عملگرها دنباله ای متناهی به طول n از عملگرهای خطی پیوسته جابجاپذیر روی فضای موضعاً محدب x است. در فصل اول، مدارهای عملگرهای ساده و عملگرهای ابردوری (در حالت n=1) مورد بررسی قرار گرفته است. بخصوص « قضیه برخی جاها چگال»، که می گوید اگر t یک عملگر خطی پیوسته روی فضای موضعاً محدب x باشد، آنگاه هر مدار t یا همه جا چگال است یا هیچ جا چگال، اثبات شده است. در فصل دوم ثابت شده است _(n+1)تایی هایی ابردوری از ماتریس های قطری وجود دارند که روی c^n ابردوری هستند، و هیچ _nتایی از ماتریس های قطری شدنی جابجاپذیر روی c^n نمی تواند ابردوری باشد. همچنین ثابت شده است هیچ چندتایی ابردوری از عملگرهای نرمال روی فضای هیلبرت نامتناهی البعد وجود ندارد. در فصل سوم نمونه هایی از _nتایی های از عملگرها روی فضای هیلبرت حقیقی ارائه شده است که مدارهای برخی جاها چگال دارند اما چگال نیستند. سپس شرایط مناسبی روی چندتایی ها بیان شده است تا با اطمینان بتوان گفت در فضای حقیقی یا مختلط یک مدار برخی جاها چگال باید چگال باشد. واژگان کلیدی: ابردوری، برخی جاها چگال، چندتایی، مدار، نیم گروه .

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

دنباله های ابردوری مضاربی از عملگرها

این رساله مشتمل بر سه فصل است.ابتدا در فصل اول به بیان برخی تعاریف وقضایایی که در فصلهای بعدی به آنها نیاز داریم می پردازیم.در فصل دوم رابطه بین محک ابردوری و عملگرهای درآمیخته توپولوژیک را مورد بررسی قرار داده و شرایط لازم و کافی را برای در آمیخته توپولوژیک بودن یک عملگر که در محک ابردوری صدق میکند را بیان میکنیم. همچنین شرط لازم و کافی برای ابردوری بودن عملگر t?t رابیان و اثبات میکن...

تعمیم خواص عملگرهای ابردوری به چندتایی ها

این پایان نامه مشتمل بر سه فصل می باشد که در آن به بررسی خواصی از عملگرهای ابردوری می پردازیم و سپس آن خواص را به چندتایی ها تعمیم می دهیم. ابتدا در فصل اول، برخی تعاریف، مفاهیم و قضایایی را که در فصل های دیگر به آنها احتیاج داریم، ارائه میدهیم. در فصل دوم ابتدا محک ابردوری را معرفی می کنیم و نشان می دهیم که اگر عملگر t در محک ابردوری صدق کند آنگاه t به توان n نیز در محک ابردوری صدق می کند. سپس...

15 صفحه اول

نظریه ی طیفی عملگرها و زیرفضاهای ابردوری یک فاصله

چکیده بردار x در فـضـای هـیلبرت h برای عملگر کراندار h h؛t ابردوری نامیده می شود مدار{t^n x:n?1} در h چگال باشد . نتیجه ی اصلی این پایان نامه بیان می کند که اگر عملگر t در محک ابردوری صدق کند و طیف اساسی دیسک یکه ی بسته را قطع کند ، آنگاه زیر فضای بسته ی نامتناهی البعد از بردارهای ابردوری به جز صفر برای tوجود دارد . عکس این نتیجه برقرار است حتی اگرt یک عملگر ابردوری باشد به طور که در محک ابرد...

15 صفحه اول

بهبودهایی از نامساوی های توابع محدب هندسی برای عملگرها

در این مقاله، تظریفی از تابع محدب هندسی ارائه که به کمک آن چندین نامساوی شناخته شده از توابع محدب هندسی بهبود داده شده‌ است. در پایان نیز نامساوی‌های بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است. نیز نامساوی‌های بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است.

متن کامل

خواص دوری برای عملگرهای ترکیبی وزن دار و n تایی از عملگرها

ابتدا به بررسی و معرفی شرایط لازم برای ابردوری بودن یک عملگر ترکیبی وزن دار و الحاق آن روی یک فضای هیلبرت می پردازیم. سپس مطلب را با ارائه شرایط معادل با محک فرادوری برای این گونه عملگرها ادامه می دهیم. همچنین محک فرادوری و رابطه ی آن با آشوبناکی برای یک چندتایی از عملگرها را مورد بررسی قرار می دهیم.

نقاط حدی مداری و ابردوری بودن عملگرها روی فضاهای تابع های تحلیلی

این پایان نامه براساس مقاله نقاط حدی مداری و ابردوری بودن عملگرها روی فضا های تابع های تحلیلی از چان و سسلینو نوشته شده است. k.c. chan and i. seceleanu, orbital limit points and hypercyclicity of operators on analytic function spaces. در این پایان نامه نشان می دهیم الحاقی یک عملگر ضربی روی فضای برگمن با داشتن یک مدار با نقطه حدی غیر صفر ابردوری است. در حالی که این نتیجه برای عملگرهای ترکیبی...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان فارس - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023