طولپاهای خطی بین فضاهای توابع لیپ شیتس برداری مقدار

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده علوم ریاضی
  • نویسنده عصمت هاشمی
  • استاد راهنما فرشته سعدی
  • سال انتشار 1392
چکیده

برای فضای متریکxو فضای نرم دار eفرض کنید lip(x,e)فضای تمام توابع کراندار لیپ شیتسf از x به eمجهز به نرم?f?_l=max?{?f?_? ,l(f)}باشد که در آن ?f?_?نرم سوپریموم و‎l(f) ثابت لیپ شیتس f است. دراین پایان نامه به بررسی طولپاهای خطی پوشایی مانندlip(y,f)?‎t: lip(x,e)که x,y ‎فضاهای متریک وe,f فضاهای نرم دار اکیداً محدب هستند‏، پرداخته می شود. شرایطی در رابطه با فضاهای متریک و همچنین شرایطی مستقل از آنها ارائه می شود که تحت آنها چنین طولپاهایی عملگر ترکیبی وزن دار باشند یعنی توصیفی به شکل زیر داشته باشند: ‎tf(y) = j(y) (f(h(y))) (f ‎?lip(x,e) , y ‎‎? y) ‎‎‎‎ ‎‎ که در آنj یک نگاشت ازy به فضایi(e,f) متشکل از طولپاهای خطی پوشا از e بهf وh:y ‎?‎x‎‎یک نگاشت حافظ فاصله کمتر از 2 است. همچنین صورت کلی طولپاهایی که لزوماً عملگر ترکیبی وزن دار نیستند نیز مشخص می شود. بخصوص نشان داده می شود که زمانی کهe ‎یاf کامل نباشند نیازی به شرط کامل بودنx,y نیست. مرجع اصلی این پایان نامه [2] است.

منابع مشابه

نگاشت های خطی دوجداساز بین برخی فضاهای لیپ شیتس

فرض کنیم[0،1) ? ? و e یک فضای باناخ و (x, d) یک فضای متریک موضعا فشرده باشد وlip0(x، e) فضای توابع لیپ شیتس کوچک e- باناخ مقدار تعریف شده بر فضای متریک هولدر موضعا فشرده( x , d^? )باشد که در بی نهایت صفر می شوند. در این پایان نامه نشان می دهیم، هر دوسویی خطی دوجداساز t:lip0(x,e) ? lip0(y,f)یک عملگر ترکیبی وزن دار به صورت t(f(y))=h(y)(f(p(y))), (f ?lip0(x,e), y ? y) است که در آن به ازای هر...

برخی ویژگی های عملگرهای خطی بین فضاهای لیپ شیتس

قضیه ی کلاسیک باناخ-استون صورت کلی طولپاهای خطی پوشا بین فضاهای توابع پیوسته بر یک فضای فشرده و هاسدورف را مشخص می کند. هدف ما بیان صورت لیپ شیتس قضیه های جریسن و کمبرن بین این فضاها در حالت برداری است. در این پایان نامه شرح کاملی از طولپاهای خطی بین فضاهای توابع لیپ شیتس برداری مقدار را بیان و ثابت می کنیم. نشان می دهیم هر طولپای خطی بین این فضاها را می توان برحسب یک نگاشت لیپ شیتس و نگاشت لیپ...

15 صفحه اول

عملگرهای ترکیبی وزن دار روی فضاهای لیپ شیتس برداری مقدار و فضاهای زیگموندگونه

در این رساله به مطالعه جبرهای لیپ شیتس برداری مقدار می پردازیم. در آغاز، فضای مشخصه و مرز شیلوف جبرهای لیپ شیتس با مقادیر در جبرهای باناخ را بدست می آوریم. سپس به معرفی و مطالعه جبرهای لیپ شیتس چندجمله $a$-مقدار روی زیرمجموعه فشرده $k$ در صفحه ( که توسط چندجمله ای های $a$-مقدار روی $k$) تولید شده اند می پردازیم. سپس عملگرهای ترکیبی وزن دار روی فضاهای لیپ شیتس برداری مقدار را مورد مطالعه قرار د...

15 صفحه اول

نگاشت های خطی دوجداساز بین فضاهای لیپشیتس کوچک برداری مقدار

در این پایان نامه شرح کاملی از نگاشت های خطی دوجداساز بین فضاهای توابع لیپشیتس برداری مقدار ارائه می دهیم و از نتایج آن برای مطالعه پیوستگی خودکار چنین نگاشت هایی و همچنین طولپایی های خطی پوشا روی این فضاها استفاده می کنیم. فضای باناخ همه توابع کراندار و لیپشیتس را فضای لیپشیتس بزرگ تعریف می کنیم و نرم این فضا را نرم مجموع یا ماکزیمم در نظر میگیریم. زیرفضای بسته از این فضا را زیرفضای کوچک لیپشی...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده علوم ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023