نظریه ی نقطه ثابت برای انقباض های تعمیم یافته در فضاهای متری مخروط

پایان نامه
چکیده

فضاهای متری مخروط تعمیمی از فضاهای متری معمولی هستند که با جایگزینی فضای باناخ حقیقی به جای اعداد حقیقی تعریف می شوند.این فضاها برای نخستین بار در سال 2007 توسط دو ریاضیدان چینی ارایه شدند.این دو محقق قضایای نقطه ثابت برای نگاشت های انقباض در فضاهای متری مخروط را با استفاده از ایده های قضایای نقطه ثابت در فضاهای متری کامل تعمیم بخشیدند.در این رساله بعد از معرفی فضاهای متری مخروط متریک هاسدورف را روی فضاهای متری مخروط تعریف کرده و با در نظر گرفتن دیدگاه سه ریاضیدان فرج زاده امینی و بالنو تعدادی از نتایج نقطه ثابت سوزوکی 2008 را تعمیم می دهیم.

منابع مشابه

قضایای نقطه ثابت برای نگاشت های انقباضی تعمیم یافته در فضاهای متری مرتب

در سال های اخیر، نتایجی از قضایای نقطه ثابت بسیاری در فضاهای متری جزئاً مرتب به دست امده است. نخستین قضیه در این جهت متعلق به ران و رویرینگز در سال 2004 است که انها کاربردهایی از ان را در معادلات ماتریسی ارائه دادند پس از ان لوپز و نیتو در سال 2005 نتیجه ران و رویرینگز را گسترش دادند و ان را برای اثبات وجود جواب یکتا برای یک معادله دیفرانسیل معمولی با شرایط مرزی متناوب به کار بردند . فرض کنید x...

15 صفحه اول

قضایای نقطه ثابت برای انقباض های تعمیم یافته در فضاهای متریک دارای یک گراف

در این پایان نامه پس از معرفی فضاهای متریک مجهز به گراف به بررسی شرایطی می پردازیم که تحت آن -انقباض ها و -انقباض های مجانبی دارای نقطه ثابت باشند. همچنین با توسیع قضیه ی نقطه ی ثابت نادلر برای نگاشت های چند مقداری، شرایطی را بررسی می کنیم که تحت آن ، نگاشت f : x ? cb(x) دارای نقطه ی ثابت باشد. در این جا (x,d) یک فضای متریک مجهز به گراف جهت دار و cb(x) کلاس تمام زیرمجموعه های بسته و ناتهی x می ...

15 صفحه اول

قضیه نقطه ثابت برای انقباض های تعمیم یافته در فضاهای متریک مرتب

در این پایان نامه وجود و یکتایی نقطه ثابت و کاربرد آن در اثبات وجود جواب معادلات انتگرالی مورد بحث قرار می گیرد. پایان نامه در چهار فصل تدوین شده است. در فصل اول، مفاهیم اولیه، تعاریف مربوطه و ابتدائی ترین قضیه نقطه ثابت، موسوم به قضیه نقطه ثابت باناخ (اصل انقباض) بیان و اثبات شده است. در فصل دوم، وجود و یگانگی نقطه ثابت نگاشت های k- انقباضی در فضاهای متریک تام که دارای رابطه ی ترتیبی جزئی هستن...

15 صفحه اول

قضیه ی نقطه ثابت برای انقباض های ضعیف تعمیم یافته به شکل عبارات گویا در فضاهای متریک مرتب

در این پایان نامه، قضیه ی نقطه ثابت را برای انقباض های ضعیف تعمیم یافته به شکل عبارات گویا در فضاهای متریک مرتب مورد بحث قرار داده ایم که این کار، تعمیمی است از قضیه ی نقطه ثابت که اخیراً توسط هارجانی و همکارانش برای انقباض های تعمیم یافته در فضاهای متریک کامل مورد بررسی قرار گرفته است و در نهایت با یک مثال، نشان داده ایم که نتایج این پایان نامه، تعمیمی از نتایج موجود است.

نتایج نقطه انطباق سه گانه برای انقباض های تعمیم یافته در فضاهای متریک تعمیم یافته مرتب

در این پایانامه ابتدا به یادآوری چند مفهوم و قضایای مقدماتی در نظریه ی نقطه ثابت پرداخته سپس قضایای نقطه انطباق سه تایی را برای نگاشت های g : x ? x و f:x*x*x ? x که در شرط ?-انقباضی ضعیف در فضاهای متریک مرتب صدق می کند ارائه می دهیم فضاهای متریک تعمیم یافته یا به طور ساده تر فضاهای g-متریک را به عنوان تعمیمی از فضاهای متریک معرفی می کنیم و برخی از نتایج نقطه انطباق سه تایی را برای نگاشت های g-ی...

قضایای نقطه ثابت و نقطه ثابت مشترک روی فضاهای متری مخروط مرتب

فضاهای متری مخروط، تعمیمی از فضاهای متری هستند. در واقع چون مجموعه ی اعداد حقیقی (r) یک فضای باناخ حقیقی است، لذا فضاهای متری حالتی خاص از فضاهای متری مخروط می باشند. تعریف فضاهای متری مخروطبرای نخستین بار در سال 2007 توسط هوانگ و ژانگ ارائه شد. این دو محقق، قضایایی راجع به نقطه ثابت نگاشت های صادق در شرایط انقباضی مختلف را به این فضاهای تازه تعریف، تعمیم بخشیدند. پس از آن، نویسندگان بسیاری با...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - دانشکده علوم ریاضی و مهندسی کامپیوتر

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023