بررسی مساله ی معکوس مقدار ویژه برای برخی ماتریس های خاص
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی
- نویسنده زهره پورشعبان مازندرانی
- استاد راهنما رضا مختاری امیر هاشمی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1385
چکیده
در این پایان نامه مساله ی معکوس مقدار ویژه را برای ماتریس های سه قطری متقارن ژاکوبی و قطری حاشیه ای که ماتریس هایی متقارن و تنک می باشند مورد بررسی قرار می دهیم. در این راستا پس از جمع آوری شرایط لازم و شرایط کافی دارای اثبات های سازنده به پیاده سازی الکوریتم ها و برنامه های مربوطه به کمک نرم افزار matlab می پردازیم. رده بندی موضوعی : 18f65
منابع مشابه
مساله مقدار ویژه معکوس برای ماتریس های نامنفی متقارن
در این پایان نامه که شامل 5 فصل می باشد حل عددی مساله مقدار ویژه معکوس نامنفی متقارن با استفاده از یک الگوریتم عددی که بر مبنای تبدیل هاوس هلدر می باشد بررسی شده است. در فصل اول مفاهیم اولیه ذکر شده و مساله مقدار ویژه معکوس معرفی گشته است. همچنین یک رده بندی از مساله مقدار ویژه معکوس ساختار یافته آورده شده است. در فصل دوم مساله مقدار ویژه معکوس نامنفی و قضایای بنیادین مربوط به آن معرفی شده ا...
15 صفحه اولمسئله مقدار ویژه معکوس ماتریس های ژاکوبی
در این پایان نامه، مسئله مقدار ویژه معکوس ماتریس های ژاکوبی و ماتریس های ژاکوبی متناوب را بررسی می کنیم. به این صورت که با داشتن مجموعه مقادیر ویژه ی این ماتریس ها، ابتدا الگوریتمی برای ساختن ماتریس ژاکوبی ارائه می دهیم. بعد از آن به بیان روابطی بین مقادیر ویژه ی دو ماتریس پرداخته و مسئله مقدار ویژه معکوس ماتریس ژاکوبی متناوب را حل می کنیم. هم چنین یک شرط لازم و کافی برای یکتایی جواب، بیان و اث...
15 صفحه اولحل پذیری مسئله ی مقدار ویژه معکوس ماتریس های نامنفی
در این پایان نامه به حل پذیری مسئله مقدار ویژه معکوس نامنفی در حالت متقارن و نامتقارن می پردازیم و اختلال های را که می توان در طیفی از یک ماتریس نامنفی ایجاد کرد،بررسی می کنیم.
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023