مطالعه برآورد لیو و برخی مباحث تشخیصی در مدل های رگرسیونی تحت محدودیت های تصادفی خطی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - دانشکده علوم ریاضی و مهندسی کامپیوتر
- نویسنده فروغ حاجی باقری فروشانی
- استاد راهنما عبدالرحمن راسخ محمدرضا آخوند
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1392
چکیده
در آنالیز داده ها، چگونگی تأثیرگذاری مشاهدات بر جنبه های گوناگون مدل آماری دارای اهمیت ویژه ای است. برخی از مشاهدات می توانند بسیاری از ویژگی های مدل را تحت تأثیر قرار دهند. شناسایی این گونه مشاهدات با استفاده از روش های مبتنی بر آنالیز تأثیر بسیار حائز اهمیت است و روش های مختلفی بدین منظور پیشنهاد شده است. از جمله این روش ها می توان به معیارهای نفوذ، باقی مانده ها، dfbetas ، dffits ، فاصله کوک و روش انتقال میانگین نقاط پرت اشاره کرد. از سوی دیگر زمانی که هم خطی میان متغیرهای پیشگو وجود داشته باشد؛ برآوردگر کمترین مربعات، کارا نخواهد بود و از نظر معیار میانگین مربعات خطای برآورد ضعیف عمل می کند بنابراین باید از برآوردگرهای اریب از جمله برآوردگر رگرسیونی لیو و لیو تحت محدودیت تصادفی بهره برد. این روش رگرسیونی با قبول اریبی به میزان کم اما کاهش واریانس به مقدار زیاد، باعث بهبود بخشیدن به میانگین مربعات خطای برآورد (از طریق به حداقل رساندن آن) می شود. این رویکرد به راحتی می تواند مسئله هم خطی و مشکلات ناشی از آن را حل نماید. در این پایان نامه ضمن مطالعه ی روش رگرسیونی لیو به بررسی روش های تشخیص مشاهدات موثر و نقاط پرت با استفاده از تعمیم برخی معیارهای تشخیصی فوق الذکر می پردازیم. سپس این روش ها را با در نظر گرفتن محدودیت تصادفی خطی، به مدل های رگرسیونی تعمیم داده و مشاهدات موثر و نقاط پرت را در مدل رگرسیونی لیو تحت محدودیت تصادفی شناسایی می کنیم. در این پایان نامه برای نشان دادن کارایی روش های پیشنهادشده در فصل های قبل مثالی را با استفاده از مجموعه داده ای واقعی ارائه می کنیم.
منابع مشابه
مطالعه ی برآورد ریج و برخی مباحث تشخیصی در مدلهای رگرسیونی تحت محدودیت های خطی تصادفی
مطالعه ی مباحث تشخیصی در مدل های مختلف رگرسیونی دارای سابقه ی طولانی است. گاهی مجموعه ی کوچکی از داده ها اثرات نامتناسبی را بر روی نتایج حاصل از آنالیز رگرسیونی اعمال می کنند. به طوری که برآورد پارامترها یا مقادیر پیش بینی شده بیشتر تحت نفوذ این مشاهدات قرار می گیرند. شناسایی چنین مشاهداتی از طریق روش ها و معیارهایی که مبتنی بر آنالیز تأثیر است امکانپذیر بوده که در مقوله ی مباحث تشخیصی تجلی پی...
15 صفحه اولمطالعه برآوردگر جک نایف لیو و برخی روش های تشخیصی در مدل های رگرسیونی
گاهی زیر مجموعه کوچکی از داده ها می توانند اثر نامناسبی بر برآورد پارامترها یا پیش بینی داشته باشند. بنابراین یافتن این داده ها برای تحلیل گر رگرسیون حائز اهمیت بوده و گامی مهم در فرآیند ساختن مدل است. اغلب وجود مشاهدات ناروا و وقوع هم خطی به صورت هم زمان پیچیدگی هایی را ایجاد می کند. بنابراین لازم است ابتدا هم خطی کنترل و سپس به تشخیص مشاهدات ناروا پرداخته شود. از سوی دیگر هم خطی باعث افزایش و...
15 صفحه اولتشخیص نقاط پرت در مدل رگرسیونی لیو
در حضور هم خطی با ناپایدار بودن برآورد کمترین توان های دوم پارامترها، انتظار می رود که باقیمانده ها هم ناپایدار باشند و در این صورت ممکن است که یک باقیمانده بزرگ از برازش کمترین توان های دوم نمایان گر یک مشاهده پرت نباشد و برعکس. در این صورت لزوم بررسی نقاط پرت هنگامی که از روش های معمول برآورد غیر از کمترین توان های دوم از جمله برآوردگر لیو استفاده می شود ضروری به نظر می رسد. در این مقاله با ا...
متن کاملتشخیص نقاط پرت در مدل رگرسیونی لیو
در حضور هم خطی با ناپایدار بودن برآورد کمترین توان های دوم پارامترها، انتظار می رود که باقیمانده ها هم ناپایدار باشند و در این صورت ممکن است که یک باقیمانده بزرگ از برازش کمترین توان های دوم نمایان گر یک مشاهده پرت نباشد و برعکس. در این صورت لزوم بررسی نقاط پرت هنگامی که از روش های معمول برآورد غیر از کمترین توان های دوم از جمله برآوردگر لیو استفاده می شود ضروری به نظر می رسد. در این مقاله با ا...
متن کاملشناساپذیری در مدل های خطی تعمیم یافته با اثرهای تصادفی
شناساپذیری یکی از ویژگیهای لازم برای کفایت یک مدل آماری است. وقتی مدلی شناساپذیر نباشد، با هیچ اندازهای از نمونه، نمیتوان پارامتر حقیقی مدل را تعیین کرد. در این مقاله، مروری بر مفهوم مشهور شناساپذیری و ویژگیهای آن شده است. بهعلاوه از آنجایی که مشکل شناساناپذیری در مدلهای خطی تعمیمیافته با اثرهای تصادفی بسیار رایج است، تمرکز اصلی ما بر روی این گونه از مدلها بوده است. از سوی دیگر، معمول...
متن کاملمباحث تشخیصی در مدلهای خطی آمیخته نیمهپارامتری با خطای اندازهگیری
تمام مشاهدات نقش یکسان در مدلهای آماری ندارند. گاهی برخی از مشاهدات اثرات نامناسبی روی نتایج تحلیل رگرسیونی دارند. بنابراین شناسایی چنین مشاهداتی در تحلیل دادهها از اهمیت ویژهای برخوردار است. برای شناسایی چنین مشاهداتی از روشهای تشخیصی استفاده می شود. در مقاله حاضر با استفاده از روش حذف موردی و مدل انتقال میانگین نقاط دورافتاده، مباحث تشخیصی در مدل خطی آمیخته نیمهپارامتری با خطا در اندازه...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - دانشکده علوم ریاضی و مهندسی کامپیوتر
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023