کدهای خلوت خوش ساختار با کمر بالا

پایان نامه
چکیده

فصل اول: مقدمه، فصل دوم: کدهای نوع اول و دوم، فصل سوم: کدهای نوع سوم، فصل چهارم: کدگذاری کدهای نوع اول دوم و سوم با استفاده از کدگشایی پاک کننده، فصل پنجم: فرم کانولوشن کدهای نوع اول دوم و سوم، فصل ششم: کدهای باگراف ساختاری کامل، فصل هفتم: کدهای خلوت با وزن ستونی و نرخ دلخواه و کمر حداکثر 18 در نهایت واژه نامه و مراجع

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

چند ساختار صریح برای کدهای خلوت شبه دوری با کمر بالا

کدهای خلوت دسته ای از کدهای بلوکی خطی هستند که علی رغم داشتن یک ساختار ساده‏، عملکردی نزدیک به نرخ شانون دارند. ‏اخیراً کدهای خلوت شبه دوری‎‏،‎‎ به عنوان دسته ای خاص از کدهای خلوت‎‏، به علت سهولت در پیاده سازی و هم چنین عملکرد عالی روی کانال های نویزدار‏، پرکاربردترین دسته از کدهای خطی محسوب می شوند و بدین ترتیب توجه زیادی را به خود جلب کرده اند. هر کد خلوت را می توان با یک گراف دوبخشی به نام گر...

کمترین فاصله کدهای خلوت آرایه ای

برای عدد اول ‎$‎‎q$‎ ‏‎ و عدد صحیح ‎$‎‎j‎leq q‎$‏‏، کد ‎$‎‎c(q,j)$‎‎ ‏‎ دسته ای از کدهای آرایه ای با ماتریس بررسی توازن خلوت است که ساختار جبری مناسبی دارند. در این پایان نامه کمترین فاصله ‎$‎‎d(q,j)$‎ ‏‎ از این کدها را بررسی می کنیم. ابتدا ثابت می کنیم که کد‏ تحت گروه دوبار متعدی از جایگشت های آفین پایا است سپس ‏برای هر عدد اول ‎$‎‎q>7$‎ ‏‎ نشان می دهیم ‎$‎‎d(5,4)=8$‏‏، ‎‎$...

15 صفحه اول

تحلیل ماتریسی کدهای شبه دوری با ماتریس بررسی توازن خلوت

بنا به قضیه شانون مادامی که نرخ ارسال اطلاعات کمتر از ظرفیت کانال باشد‏، خطای ناشی از حضور پارازیت را می توان با ارایه ساختارهایی مناسب به مقداردلخواه کاهش داد. در میان کدهای تصحیح کننده خطا‎ کدهای شبه دوری با ماتریس بررسی توازن خلوت ‏جزء کدهای بلوکی خطی هستند. عملکرد برخی از کدهای این خانواده بسیار نزدیک به حد شانون است ‏و در حال حاضر از نظر عملکرد بهترین ساختار شناخته شده می باشند. ساخت کدهای...

شمارش دورهای کوتاه در پروتوگراف های کدهای شبه دوری خلوت

در این پایان نامه روشی کارا برای شمارش تعداد دورهای کوتاه در گراف بدوی کدهای شبه دوری خلوت ارائه می دهیم.این روش که مبتنی بر رابطه ی بین تعداد دور های کوتاه در گراف و مقادیر ویژه ماتریس وقوع است را بیان میکنیم.در این روش به منظور کاهش پیچیدگی محاسبه مقادیر ویژه ماتریس وقوع از ویژگی های ماتریس دوری بلوکی استفاده می کنیم.نتایج بدست آمده نشان می دهد پیچیدگی محاسبات در این روش نسبت به روش های موجود...

15 صفحه اول

فاصله و افزونگی متوقف کننده در کدهای هندسی با ماتریس بررسی توازن خلوت

یک کد c با پارامترهای [n,k,d] که n، k و d به ترتیب طول کد، بعد کد و کمترین فاصله همینگ است، دارای ماتریس بررسی توازن h می باشد که هر کدکلمه c در رابطه hct=0 صدق می کند. کدهای با ماتریس بررسی توازن با چگالی کم، کدهای خطی بلوکی هستند که ماتریس بررسی توازن آن ها خلوت می باشد. متناظر با یک ماتریس بررسی توازن h از کد c، یک گراف دوبخشی به نام گراف تنر به صورت زیر تعریف می شود. در یک بخش متناظر با ه...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023