نامساوی استراوسکی برای توابعی با مشتق s-محدب نوع دوم
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه رازی - پژوهشکده علوم
- نویسنده معصومه رحمانی
- استاد راهنما محمد ابوالقاسمی
- سال انتشار 1391
چکیده
نامساوی استراوسکی یکی از نامساویهای کاربردی است که دانشمندان سعی در تعمیم آن داشته ودارند.در این رساله ابتدا این نامساوی را اثبات وسپس آن را برای توابع s-محدب وهمچنین توابعی با مشتق s-محدب نوع دوم تعمیم میدهیم.ودر نهایت کاربردهایی از این نامساوی را برای میانگینهای خاص ازجمله میانگین حسابی ومیانگین تعمیم یافته لگاریتمی بیان و اثبات مینماییم.
منابع مشابه
بهبودهایی از نامساوی های توابع محدب هندسی برای عملگرها
در این مقاله، تظریفی از تابع محدب هندسی ارائه که به کمک آن چندین نامساوی شناخته شده از توابع محدب هندسی بهبود داده شده است. در پایان نیز نامساویهای بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است. نیز نامساویهای بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است.
متن کاملنامساوی های نوع هرمیت - هادامارد برای تابع h-محدب
نامساوی هرمیت-هادامارد یکی از نامساوی های مهمی است که توجه بسیاری از ریاضیدانان را به خود جلب کرده است. در این رساله ابتدا این نامساوی را برای تابع محدب بررسی می کنیم. سپس نامساوی هرمیت-هادامارد را برای برخی توابع محدب و شبه محدب دیفرانسیل پذیر ارائه می دهیم و کاربردهایی از میانگین های خاص را بیان می کنیم. به علاوه این نامساوی را برای تابع s-محدب نیز بررسی می کنیم، در ادامه پس از یک مطالعه ی گس...
نامساوی هایی در توابع s-محدب و کاربرد آنها
برخی نتایج جدید مربوط به نامساوی هرمیت هادامارد برای کلاسی از توابع که دومین مشتقات توانی معین آنها، توابع-s محدبی در دومین مفهوم هستند، بدست آمده اند. و همچنین، برخی از کاربرد های میانگین های خاص از اعداد حقیقی نیز اثبات شده است.
15 صفحه اولنامساوی هادامارد برای توابع لگاریتم محدب
در این پایان نامه تابع محدب و همچنین توابعی از نوع محدب مانند m - محدب و (a,m) - محدب و s - محدب و از قبیل این توابع به خصوص توابع لگاریتم محدب را معرفی می ناماید و به اثبات نامساوی هادامارد برای این توابع می پردازد.
15 صفحه اولبرنامه ریزی درجه دوم محدب تعمیم یافته برای حل دستگاه های خطی فازی
دستگاه معادلات خطی، یکی از مهمترین ابزارهای مدلسازی پدیده های دنیای واقعی است. اما از آنجاییکه پدیده های دنیای واقعی همواره با عدم قطعیت همراه هستند، لذا حل دستگاه معادلات خطی فازی از اهمیت بسزایی برخوردار میشود. یکی از روش های متداول و پر کاربرد برای یافتن جوابهای دقیق و تقریبی یک دستگاه معادلات خطی فازی، استفاده از روش کمترین مربعات است. در این روش، با انتخاب یک متر دلخواه و حل یک مساله برن...
متن کاملنامساوی پوپویچی برای توابع ماتریسی با توان منفی
در این مقاله، با استفاده از مقادیر ویژه ماتریسها و نامساوی عددی پوپویچی، این نامساوی برای اثر ماتریسهای مثبت بیان شده است. به علاوه، با در نظر گرفتن توابع ماتریسی با توان منفی، نامساویهای ماتریسی از نوع پوپویچی به دست آمده است. نتایج به دست آمده در این مقاله، معکوس نامساویهای ماتریسی شناخته شده هستند.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه رازی - پژوهشکده علوم
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023