گراسمنین، مختصات پلوکر و جبرهای خوشه مربوطه

پایان نامه
چکیده

قضیه ی نشاننده پلوکری نشان می دهد که می توان گراسمنین ها را در فضای تصویری از مرتبه نشاند و هر نقطه را با مختصات همگنی که مختصات پلوکری نام دارد نمایش داد. حلقه ی مختصاتی همگن گراسمنین ها دارای خواص هندسی و جبری شامل مثلث بندی چندوجهی ها است. نشان می هیم این حلقه را می توان به صورت خوشه به خوشه ارایه کرد. جبرهای خوشه ای که توسط فومین و زلوینسکی در سال ???? معرفی شد در واقع تعمیم طبیعی از چنین جبرهای مختصاتی است. در این پایان نامه توصیفی از حلقه مختصاتی همگن گراسمنین ها و جبرهای خوشه ای مربوطه ارایه می دهیم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

جبرهای فیستر با برگردان

در این مقاله به مرور فرم‌های دوخطی فیستر روی میدان‌ها و برگردان‌های فیستر روی جبرهای ساده‌ٔ مرکزی می‌پردازیم. همچنین به بیان حدس‌های مهم در این راستا، تلاش‌های انجام شده برای اثبات آن‌ها و نیز مسائل باز باقیمانده در مشخصه‌ٔ مخالف دو خواهیم پرداخت. درنهایت، تلاش‌های انجام شده برای تعمیم این حدس‌ها به مشخصه‌ٔ دو و تفاوت‌های نتایج به دست آمده در این مشخصه با سایر مشخصه‌ها نیز مرور می‌شوند.

متن کامل

جبرهای خوشه ای پنهانی

جبرهای خوشه ای- اریب، حلقه های درون ریختی از اشیاء اریب t در رسته های خوشه ای هستند. یک جبر خوشه ای-اریب را، خوشه ای پنهانی می نامیم، هرگاه t یک مدول پیش تصویری و اریب باشد؛ برای مثال، همه ی جبرهای خوشه ای-اریب نمایش متناهی، جبرهای خوشه ای پنهانی هستند. در این پایان نامه نشان می دهیم که اگر c یک جبر خوشه ای- اریب نمایش متناهی باشد، آن گاه c-مدول های تجزیه ناپذیر توسط بردارهای بعدی مشخص می شوند.

15 صفحه اول

C*-جبرها و جبرهای کامیان-پسک تجزیه ناپذیر

فرض کنیم A یک گراف سطری- متناهی و K یک میدان است. در این مقاله، به مطالعه تجزیه‌پذیری جبر کامیان-پسک KP(A) و C*-جبر C*(A) متناظر با A می‌پردازیم. به ویژه، به کمک ویژگی‌های A و گروه‌وار G_A ، شرایط لازم و کافی برای این تجزیه‌پذیری ارایه می‌شود. علاوه بر این نشان می‌دهیم در شرایط خاص می‌توان جبر کامیان-پسک را به‌صورت حاصل‌جمع مستقیم متناهی از جبرهای کامیان-پسک تجزیه‌ناپذیر نوشت.

متن کامل

جبرهای باناخ انقباض پذیر

فرض کنید یک جبر باناخ باشد. ما نشان می دهیم که اگر یک ایده ال انقباض پذیر ازیک جبر باناخ باشد آنگاه برقرار است. سپس وجود یک خود توان می نیمال مرکزی را در یک جبر باناخ انقباض پذیرکه یک تابعک ضربی نا صفر روی آن موجود باشد ثابت می کنیم. همچنین مفهومb- انقباض پذیری و یکی از فرم های معادل آن را معرفی می کنیم و با مثالی نشان می دهیم که b- انقباض پذیری به طور اکید از انقباض پذیری ضعیف تر است.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی علوم پایه زنجان - دانشکده ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023