پیش بینی تراز آب زیرزمینی دشت قم به وسیله مدل ترکیبی شبکه عصبی- موجک

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه قم - دانشکده فنی
  • نویسنده هادی ابراهیمی
  • استاد راهنما طاهر رجایی
  • تعداد صفحات: ۱۵ صفحه ی اول
  • سال انتشار 1392
چکیده

مدل‏های پیش‏بینی صحیح و قابل اطمینان تراز آب زیرزمینی برای مدیریت منابع آب اهمیت دارند. در سال‏های اخیر استفاده از تحلیل موجک برای تجزیه سری‏های زمانی و ترکیب آن با شبکه‏های عصبی به صورت گسترده‏ای در مدل‏سازی پدیده‏های هیدرولوژیکی به کار رفته‏است. در پژوهش حاضر کاربرد مدل‏های شبکه عصبی، ترکیبی شبکه عصبی- موجک و رگرسیون خطی چندمتغیره در پیش‏بینی تراز آب زیرزمینی هفت حلقه پیزومتر واقع در دشت قم بررسی شده است. سه نوع مدل سازی با سه گروه از پیزومترها انجام شد. ابتدا پیزومترهای 1، 2 و 3 مورد بررسی قرار گرفت و از داده‏های سری زمانی تراز آب زیرزمینی ماهانه به مدت ده سال به عنوان ورودی مدل ها استفاده شد. مدل ترکیبی شبکه عصبی- موجک که از روش جمع زیرسری‏ها استفاده می کند، توانست پیش‏بینی قابل قبولی از تراز آب زیرزمینی تا 12 ماه آینده ارائه دهد؛ در حالی که پیش‏بینی مدل های شبکه عصبی و رگرسیون خطی چندمتغیره رضایت بخش نبود. برای مدل سازی پیزومترهای 4 و 5 از داده های بارندگی ماهانه نیز استفاده شد. پیش‏بینی 12 ماه آینده با مدل ترکیبی شبکه عصبی- موجک نشان داد خطای این مدل در مقایسه با مدل شبکه عصبی به میزان 30 و 23 درصد و در مقایسه با مدل رگرسیون خطی چندمتغیره 37 و 51 درصد به ترتیب برای پیزومترهای 4 و 5 کمتر است. نتایج نشان داد بارندگی اثر قابل توجهی روی تغییرات تراز آب زیرزمینی این دو پیزومتر ندارد؛ اگرچه در زیرسری‏های جزئیات حاصل از تجزیه موجکی، استفاده از بارندگی باعث بهبود نتایج شد. سپس توانایی مدل های ترکیبی موجک- شبکه عصبی تأخیر زمانی و موجک- رگرسیون برای پیش‏بینی یک ماه آینده تراز آب زیرزمینی پیزومترهای 6 و 7 ارزیابی شد. داده‏های استفاده شده برای تشکیل این مدل ها فقط تراز آب زیرزمینی ماهانه به مدت ده سال ‏بود. مدل ترکیبی شبکه عصبی- موجک با استفاده از موجک مادر meyer با دو سطح تجزیه، توانست یک ماه آینده را با ضریب های نش 993/0 و 974/0 به ترتیب برای پیزومترهای 6 و 7 پیش بینی کند. این مقادیر برای مدل ترکیبی موجک- رگرسیون به ترتیب 989/0 و 978/0 بود.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش بینی تراز آب زیرزمینی دشت شاهرود استفاده از شبکه عصبی مصنوعی تابع پایه شعاعی

     Groundwater level prediction is an important issue in scheduling and managing water resources. A number of approaches such as stochastic, fuzzy networks and artificial neural network have been used for such prediction. A neural network model has been employed in this research for Shahrood plain groundwater level prediction. For this reason, statistical parameters of groundwater level fluct...

متن کامل

کاربرد مدل شبکه عصبی- موجک برای پیش بینی ویژگی های غیرایستا و غیرخطی سری زمانی تراز آب زیرزمینی

سفره ‏های آب زیرزمینی غالباً به عنوان سیستم ‏هایی با ویژگی ‏های غیرایستا و غیرخطی شناخته می ‏شوند. مدل‏ سازی این سیستم ‏ها و پیش ‏بینی حالت ‏های آینده آن ‏ها نیازمند تشخیص این ویژگی‏ های بنیادی است. اخیراً، آنالیز موجک به دلیل توانایی آن در رمزگشایی ویژگی‏ های اشاره‏ شده، به طور گسترده ‏ای در زمینه پیش ‏بینی سری‏ های زمانی هیدرولوژیکی مورد استفاده قرار گرفته ‏است. در این مقاله توانایی مدل ترکیبی ...

متن کامل

پیش بینی زمانی و مکانی تراز آب زیرزمینی دشت داورزن

هدف از این پژوهش تخمین مقدار تراز آب زیرزمینی در نقاط مختلف دشت داورزن واقع در استان خراسان رضوی در یک ماه آینده است. جهت پیش ­بینی زمانی از روش پرسپترون چندلایه‌ شبکه­ عصبی و برای پیش ­بینی مکانی از روش کریجینگ استفاده شده است. داده­ های ورودی شامل سری زمانی تراز آب زیرزمینی است که به ­مدت هشت سال از مهر 82 تا اسفند 89 به صورت ماهیانه اندازه­گیری شده است. ابتدا به ­منظور تعیین میزان دقت مدل، ت...

متن کامل

مدل‌سازی تراز آب زیرزمینی با بهره‌گیری از مدل هیبرید موجک- شبکه عصبی مصنوعی (مطالعه موردی: دشت شریف‌آباد)

منابع آب زیرزمینی یکی از مهم­ترین منابع تأمین آب می­باشند، از این­رو مدل­سازی آن­ها بسیار حائز اهمیت می­باشد. ارزیابی و پیش­بینی تراز آب زیرزمینی به پیش­بینی منابع آب زیرزمینی کمک می­کند. هدف این مطالعه ارزیابی عملکرد سه مدل رگرسیون خطی چندمتغیره (MLR)، مدل هیبرید موجک- شبکه عصبی (WNN) و شبکه عصبی مصنوعی (ANN) در پیش­بینی سطح آب زیرزمینی (GWL)، بر مبنای دو معیار ریشه خطای مربع متوسط (RMSE) و ضر...

متن کامل

پیش بینی تراز آب زیرزمینی دشت شاهرود استفاده از شبکه عصبی مصنوعی تابع پایه شعاعی

پیش­بینی تراز آب زیرزمینی به منظور مدیریت و برنامه­ریزی منابع آب، بسیار مهم است. برای انجام این پیش­بینی، از روش­های متعددی مانند روش­های استوکستیکی، منطق فازی و شبکه عصبی مصنوعی می­توان استفاده نمود. در تحقیق حاضر، مدل شبکه عصبی مصنوعی rbf هیبرید برای پیش­بینی تراز آب زیرزمینی دشت شاهرود مورد استفاده قرار گرفته است. این هیبرید بودن شبکه باعث افزایش دقت روش نسبت به شبکه rbf پایه می­شود. بدین من...

متن کامل

استفاده از مدل های ترکیبی ماشین بردار پشتیبان - موجکی و شبکه عصبی -موجکی در پیش‌بینی تراز آب زیرزمینی دشت اردبیل

چکیده آب‌های زیرزمینی همواره به عنوان یکی از منابع مهم و عمده­ ی تأمین آب شرب و کشاورزی به ویژه در مناطق خشک و نیمه­ خشک مطرح بوده‌اند. به منظور آگاهی از وضعیت این منابع و مدیریت بهینه­ ی آنها، لازم است پیش‌بینی دقیقی از نوسانات سطح آب زیرزمینی صورت گیرد. در این تحقیق اطلاعات 15 پیزومتر موجود در دشت اردبیل مورد استفاده قرارگرفت. از تبدیل موجک و روش خوشه‌بندی به ترتیب برای پیش‌پردازش زمانی و مک...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه قم - دانشکده فنی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023