گراف جابجایی وابسته به حلقه ی ناجابجایی

پایان نامه
چکیده

گراف جابجایی از یک حلقه ی ناجابجایی r که با نماد (?(r نمایش داده می شود، گرافی است که مجموعه ی رئوس آن عناصر غیرمرکزی حلقه هستند و دو رأس a و b از این گراف با هم مجاورند، اگر و فقط اگر ab = ba. در میان نتایج بدست آمده، نشان می دهیم قطر گراف مکمل کمتر از 3 است و ثابت می کنیم قطر گراف مکمل 1 است اگر و فقط اگر r حلقهای 4 عضوی باشد.همچنین نشان داده می شود اگر r یک حلقه ی ناجابجایی یکدار از مرتبه ی pi باشد، آنگاه گراف وابسته به آن همبند نیست. (2<i?4) در ادامه، مینیمم درجه و عدد خوشه ای گراف ?(mn(f را تعیین می کنیم که در آن f یک میدان متناهی است. در پایان به بحث درباره ی گراف جابجایی وابسته به حلقه ی ناجابجایی r = r1×r2×…×rn که در آن به ازای هر i? {1, … , n، حلقه ی ri حلقه ای ناجابجایی است، می پردازیم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

گراف هم ماکسیمال در حلقه های جابجایی و ناجابجایی

برای حلقه یکدار r ? گراف هم ماکسیمال حلقه r ? که با ?(r) نشان داده می شود، گرافی ساده است که رأس های آن همه ی عناصر r بوده و دو رأس متمایز x و y مجاور هستند، اگر و تنها اگر rx+ry=r . هدف از مطالعه ی گراف هم ماکسیمال، ایجاد ارتباط بین نظریه ی گراف و نظریه ی حلقه می باشد. این پایان نامه در دو مرحله انجام ?می شود. مرحله اول: ابتدا زیرگراف? ?(r)? از گراف ?(r) که وابسته به عناصر غیر یکه r است را ...

15 صفحه اول

گراف هم بیشین وابسته به حلقه های جابجایی و غیرجابجایی

گراف هم بیشین حلقه ی یکدار r گرافی است که مجموعه ی راس های آن تمامی عناصر حلقه یr است و دو راس از آن مانندa و b مجاورند اگر و تنها اگر ra+rb=r .برخی از ویژگی های آن مانند هم بندی و قطر را بررسی میکنیم.

گراف ناجابجایی وابسته به گروه های متناهی

فرض کنیم g یک گروه نا آبلی باشد. گراف ناجابجایی وابسته به گروه g که با ?_g نشان داده می شود، یک گراف با مجموعه ی رئوس g(g) است که در آن z(g) مرکز گروه g است. همچنین دو رأس متمایز a و b در آن با هم مجاورند هرگاه ab?ba. زیر مجموعه ی s از مجموعه ی رئوس گراف ?_g، یک مجموعه ی غالب است هرگاه هر رأس v در v(?_g)s با حداقل یک رأس از s مجاور باشد. عدد غالب گراف ?_g، اندازه ی کوچک ترین مجموعه ی غالب گر...

نشاندن گراف های خطی وابسته به گراف مقسوم علیه صفر حلقه های جابجایی

فرض کنیم r یک حلقه جابجایی و یکدار باشد. گراف مقسوم علیه صفر حلقه r که با نمایش داده می شود گرافی است که راس های آن مقسوم علیه صفر r هستند و دو راس مجاورند اگر حاصلضرب آنها صفر شود. در این پایان نامه به مطالعه ی نشاندن مینیمال گراف های خط وابسته به که آن را با نمایش می دهیم به روی رویه های فشرده می پردازیم. همچنین به طور کامل همه ی حلقه های جابه جایی متناهی r که گراف وابسته به مقسوم علیه صفر آن...

15 صفحه اول

گراف ایدآلهای دو به دو متباین روی حلقه های جابجایی و ناجابجایی

در این پایان نامه ویژگی های (?(r مورد بررسی قرار می گیرد. همچنین زیرگرافی از آن را به گونه ای در نظر میگیریم که رئوس آن عناصر غیروارون پذیر حلقه r بوده و در رادیکال جیکوبسن قرار ندارند.همچنین همبندی و قطر این زیر گراف کاملا مشخص می گردد و برای دو حلقه جابجایی و نیم موضعی متناهی مانند r و s اگر r حلقه ای کاهش یافته باشد آنگاه ثابت می شود که گرافهای حاصل از این دو حلقه با یکدیگر یکریخت هستند اگر ...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023