جواب های لگاریتم محدب معادله تابعی (f(x+1)=g(x)f(x

پایان نامه
چکیده

در این پایان نامه نخست قضیه ای برای بدست آوردن جواب های لگاریتم محدب معادله تابعی (f(x+1)=g(x)f(x ثابت می کنیم که تعمیمی از قضیه بور - مولراپ - آرتین است چنین قضیه ای امکان به دست آرودن قضایای دیگری برای معادله تابعی دیگری را با توجه به شرایط اعمال شده بر g فراهم می کند در واقع با اعمال شرایط مجانبی روی g می توان جوابهای (سرانجام) لگاریتم محدب و همچنین جواب های (سرانجام )لگاریتم محدب از مرتبه دوم را برای معادله تابعی مذکور با شرط f(1)=1 برای همه اعداد حقیقی مثبت به دست آورد. همچنین قضیه ای ثابت می کنیم که وجودو یکتایی این جواب ها را بیان می کنیم. در پایان به معرفی توابع نوع گاما می پردازیم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نامساوی هادامارد برای توابع لگاریتم محدب

در این پایان نامه تابع محدب و همچنین توابعی از نوع محدب مانند m - محدب و (a,m) - محدب و s - محدب و از قبیل این توابع به خصوص توابع لگاریتم محدب را معرفی می ناماید و به اثبات نامساوی هادامارد برای این توابع می پردازد.

15 صفحه اول

مدل سازی جواب های سالیتونی معادله غیر خطی تعمیم یافته رادهاکریشنان-کاندو-لاکشمینن

بیشتر مسائل در فیزیک، ریاضی و مهندسی از جمله مکانیک سیالات (جریان سیال و انتقال حرارت و...) فیزیک پلاسما، لیزر، اپتیک و معادلات به طور ذاتی غیر خطی هستند. اکثریت این مسائل توسط معادلات دیفرانسیل جزئی و معمولی شکل پیدا می کنند. به جزء تعداد محدودی از این معادلات که داری حل تحلیلی دقیق هستند، بیشتر این مسائل حل دقیق ندارند؛ که باید به وسیله شیوه‌های جدیدی مبتنی بر کد نویسی هایی بر پایه نرم افزاره...

متن کامل

جواب های معادله موج میرا

در این پایان نامه مسئله کوشی را برای معادله موج میرا مطالعه می کنیم. با استفاده از روش انرژی وزن دار تخمین هایی از جواب این مسئله را به دست خواهیم آورد و نشان خواهیم داد که این تخمین ها در حالت فوق بحرانی به طور تقریبی بهینه هستند.

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه شهرکرد - دانشکده علوم ریاضی

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023