رنگ آمیزی برداری متعامد گراف ها
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی
- نویسنده فاطمه مدللیان
- استاد راهنما بهناز عمومی رامین جوادی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1392
چکیده
رنگ آمیزی برداری متعامد گراف ها چکیده فرض کنید f یک میدان ، s ، a ، b و c زیرمجموعه هایی از f ، d یک عدد صحیح مثبت و تابع f (x , y) یک فرم دوخطی ناتبهگون روی باشد ، یک نمایش برداری از گراف ساده g با رأس های , … , عبارت است از لیست بردارهای , … , متعلق به به طوری که بردار به رأس تخصیص داده شود ، مولفه های هر بردار در s قرار گیرد ، برای هر i و j ،a f ( , ) ، اگر با در g مجاور باشد ، آن گاهb f ( , ) و اگر با در g نامجاور باشد ، آن گاهc f ( , ) . این تعریف در سال ???? توسط پارسنز و پیسانسکی ارائه شد . سپس در سال ???? جرالد هاینس و همکارانش با اختیار مجموعه های a = (0 , ?) ، b = { 0 } ، f = c = s و f به عنوان تابع دو خطی ضرب داخلی ، یک نوع خاص از نمایش برداری را برای گراف g در نظر گرفته و آن را رنگ آمیزی برداری گراف g نامیدند و بر این اساس گراف های k- انتخاب پذیر برداری و k- انتخاب پذیر زیرفضایی را که معادل برداری تعریف گراف های k- انتخاب پذیر است ، معرفی نمودند . دسته بندی تمامی گراف های ?- انتخاب پذیر برداری و ?- انتخاب پذیر زیرفضایی ، معرفی نمایش های برداری مختلف و نتایج مربوط به آن و بیان چند کاربرد از نمایش های برداری موضوع اصلی این پایان نامه را تشکیل می دهد .
منابع مشابه
رنگ آمیزی پویای گراف ها
در این پایانامه سعی می کنیم به ارتباط بین عدد رنگی و عدد رنگی پویای گراف ها در حالت خاص بپردازیم, علاوه بر آن عدد رنگی پویای انتخابی(لیستی) را معرفی کرده و بعضی از نتایج آن را بیان می کنیم.
رنگ آمیزی پویای گراف ها
یک k رنگ آمیزی گراف g را رنگ آمیزی پویا می نامند, اگر در همسایه های هر رأس آن با حداقل درجه دو, حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k را به طوری کهg دارای یک k-رنگ آمیزی پویا باشد, عدد رنگی پویای g می نامند. در این پایان نامه به بررسی مفهوم رنگ آمیزی پویا, عدد رنگی پویای برخی گراف های خاص و کران بالای عدد رنگی پویا که در مقاله lai, h. j.,b. montgomery, h. poon, (2003), upper bounds ...
15 صفحه اولرنگ آمیزی وقوع گراف ها
فرض کنیم (g=(v,eیک گراف ساده با مجموعه رئوس (v(gو مجموعه یال های (e(gباشد. vرارأسی دلخواه در gدر نظر میگیریم که واقع بر یال eباشد. زوج (v,e)را یک وقوع در گراف می نامیم. مجموعه ی همه ی وقوع ها در گراف را با(i(g نمایش می دهیم. دو وقوع مجزای (v,e) و (w,f)را در گراف مجاور گوییم هرگاه یکی از حالات زیر رخ دهد: الف) v=w: ب)e=f: ج)یال vw برابر با e یا f باشد. رنگ آمیزی وقوع در گراف را نگاشتی از مجموع...
15 صفحه اولرنگ آمیزی همیلتونی گراف ها
برای رئوس u وv از گراف همبندg با مرتبه n، طول بلندترین u-v مسیر درg به وسیله d(u،v) نشان داده می شود. رنگ آمیزی هامیلتونی c از گرافg برچسب گذاری برای رئوس موسوم به رنگ است، به طوری که برای هر دو رأس متفاوت u وv از گرافg داشته باشیم: d(u،v)+|c(u)-c(v)|?n-1. مقدار hc(c) رنگ آمیزی هامیلتونی cاز گراف g، بیشترین رنگ اختصاص داده شده به یک رأس از g توسط c است، و عدد رنگی هامیلتونی g که آن را با hc(...
15 صفحه اولرنگ آمیزی کامل گراف ها
در این رساله به بررسی گراف های تمام رنگ پذیر و خصوصیات آن ها می پرازیم. در بعضی از گراف های خاص درستی حدس رنگ آمیزی کلی را نشان می دهیم و کران های بالایی برای عدد رنگی کلی مطرح می کنیم. مبحث اصلی مورد مطالعه در این رساله، بررسی گراف های یکتا رنگ پذیر کلی می باشد. حدس مهمی که در این زمینه مطرح می شود دلالت بر این دارد که تنها گراف های تهی، مسیرها و دورهای از مرتبه ی 3k، k یک عدد طبیعی است، در رد...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023