استفاده از شبکه عصبی مصنوعی در پیش بینی خستگی کامپوزیتها

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران) - دانشکده مهندسی مکانیک
  • نویسنده حسین پرهیزگار
  • استاد راهنما صدوق ونینی
  • تعداد صفحات: ۱۵ صفحه ی اول
  • سال انتشار 1386
چکیده

شبکه عصبی مصنوعی یک ابزار ریاضی است که برای شبیه سازی پدیده های پیچیدهٌ علمی و مسایل مهندسی مورد استفاده قرار می گیرد.برای آموزش شبکه عصبی تعداد مشخصی داده های آزمایشگاهی نیاز است. پس از اینکه شبکه عصبی روش حل مسیله را یادگرفت داده های جدید از همان دامنه بدون نیاز به آزمایشات بیشتر به وسیله شبکه عصبی قابل پیشبینی است.در این تحقیق با استفاده از شبکه عصبی مصنوعی، به سه روش عمر خستگی کامپوزیتهای مختلف پیشبینی شده است.1- عمر خستگی کامپوزیتهای تک جهته در جهات مختلف تنها با داشتن عمر خستگی آن کامپوزیت در چند جهت مشخص پیشبینی شده است.2- عمر خستگی کامپوزیتهای چند لایه در نسبت تنشهای متفادت تنها با دانستن عمر خستگی آن در دو نسبت تنش پیشبینی شده است.3-عمر خستگی کامپوزیتهای چند لایه که بر روی آن آزمون خستگی صورت نگرفته تنها با دانستن خواص مکانیکی آن با استفاده از داده های خستگی کامپوزیتهای دیگر.در انتها نتایج پیشبینی عمر خستگی توسط شبکه عصبی با پیشبینی به روش پارامتریک عمر ثابت مقایسه شده و مشخص شده که نتایج شبکه عصبی قابل اطمینانتر است.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه

پیش‌بینی بارش یکی از مهم‌ترین مسائل در زمینه مدیریت بهینه منابع آب در بخش‌های مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیش‌بینی بارش زمستانه استان خراسان رضوی با استفاده از شبکه‌های عصبی مصنوعی می‌باشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقه‌ای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...

متن کامل

پیش بینی درصد متان موجود در گاز مراکز دفن زباله با استفاده از شبکه عصبی مصنوعی

Backgrounds and Objectives:A number of different technologies have recently been studied todetermine the best use of biogas, however, to choose optimize technologies of using biogas for energy recovery it is necessary to monitor and predict the methane percentage of biogas. In this study, a method is proposed for predicting the methane fraction in landfill gas originating from Labscalelandfill ...

متن کامل

مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی

شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...

متن کامل

پیش بینی تولید آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه عصبی مصنوعی

پیش­بینی پدیده­های اقتصادی ساختاری فراهم می­کند تا مدیران و مسؤلان اقتصادی را در گرفتن تصمیم‌های درست یاری ­دهد. هدف اصلی این مطالعه پیش­بینی مقدار تولید آبزیان دریایی در ایران است. برای این منظور از روش­های سری زمانی خود توضیح جمعی میانگین متحرک (ARIMA)[1] و شبکه عصبی مصنوعی[2] استفاده می­شود. در این مطالعه سه ساختار گوناگون شبکه عصبی شامل شبکه عصبی پیشرو[3]، تابع پایه شعاعی[4] و المن[5] بکار ...

متن کامل

پیش بینی تبخیر با استفاده از شبکه عصبی مصنوعی و سیگنا لهای اقلیمی در حوضه دز

تبخیر از پدیده های مهم چرخه آبشناختی است و تخمین و پیش بینی آن در مدیریت و برنامه ریزی اصولی آب ضروری می باشد، به همین خاطر به پیش بینی این پدیده در حوضه دز که بخش مهمی از آب مصرفی کشور را تأ مین می کند پرداخته شده است. در شبیه سازی تبخیر و بررسی امکان پیش بینی آن ازمدل شبکه عصبی مصنوعی با بهره گیری از نرم افزار نروسلوشن استفاده گردیده که آمار مربوط به تبخیر در 4 ایستگاه همدید با حداقل 19 سال آ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران) - دانشکده مهندسی مکانیک

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023