پیش بینی نوسانات بازدهی شاخص کل بورس اوراق بهادار با مدل ترکیبی شبکه عصبی مصنوعی موجکی-سری زمانی

پایان نامه
چکیده

در پژوهش حاضر چارچوبی متشکل از سه مدل ناهمسانی واریانس شرطی گارچ(garch)،شبکه عصبی مصنوعی-گارچ (nn-garch) و شبکه عصبی مصنوعی موجکی-گارچ (wnn-garch) به منظور پیش بینی نوسانات بازدهی شاخص کل بورس اوراق بهادار ارائه شده است.نتایج نشان می دهد که استفاده از شبکه عصبی مصنوعی پیشخور با الگوریتم پس انتشار برای تخمین مدل ناهمسانی واریانس شرطی گارچ به دلیل عدم نیاز این مدل به مفروضاتی همچون نوع تابع توزیع داده ها درکنار انعطاف پذیری بالای این شبکه ها در پردازش داده ها و انتخاب بهترین مدل باتوجه به میزان خطا،تا حد بسیار زیادی نتایج پیش بینی حاصل از مدل گارچ را بهبود می بخشد و همچنین انجام آنالیز موجک بر روی سری زمانی ورودی های شبکه عصبی مصنوعی به دلیل منعکس نمودن ویژگی نوسانات خوشه ای در داده های مالی می تواند تا حد قابل قبولی نتایج پیش بینی شبکه را ارتقا دهد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه مدل های شبکه عصبی با مدل سری زمانی باکس- جنکینز در پیش بینی شاخص کل قیمت سهام بورس اوراق بهادار تهران

پژوهش حاضر به مقایسه مدلهای شبکه عصبی و سری­زمانی در پیش­بینی قیمت شاخص سهام   می­پردازد. بدین جهت سه مدل از شبکه­های عصبی(پروسپترونی چند لایه ،پایه­ای شعاعی و رگرسیونی) و یک مدل از مدل­های سری­زمانی (باکس- جنکینز) مورد بررسی قرار گرفته‌اند. شاخص کل قیمت سهام بازار بورس تهران در بازه زمانی ابتدای فروردین 1384 تا انتهای اسفند 1388 به عنوان جامعه ­آماری انتخاب شده است. به منظور داشتن معیاری برای ...

متن کامل

پیش بینی شاخص سهام با استفاده از شبکه های عصبی موجکی در بورس اوراق بهادار تهران

در این تحقیق شاخص کل سهام بورس اوراق بهادار تهران با استفاده از مدل­های مختلف شبکه های عصبی پیش بینی شده است. تحقیق از نوع کاربردی است و دورۀ زمانی انجام تحقیق از ابتدای سال 81 تا پایان سال 90 است. گردآوری اطلاعات از طریق آمار و داده­های موجود در پایگاه اطلاعاتی در بورس اوراق بهادار تهران صورت گرفته است. برای ایجاد مدل wdbp از موجک db5 برای نویززدایی داده­ها و تا پنج مرحله صورت گرفته است. جذر م...

متن کامل

ارائه مدل پیش بینی شاخص کل قیمت سهام با رویکرد شبکه های عصبی (مطالعه موردی: بورس اوراق بهادار تهران)

هدف تحقیق حاضر ارائه مدل پیش­بینی شاخص قیمت سهام در بورس اوراق بهادار با استفاده از شبکه­های عصبی مصنوعی است. بر این اساس، شاخص صنعت، شاخص مالی و شاخص بازده نقدی به ­صورت سالانه به عنوان متغیرهای ورودی (مستقل) طرح شد. برای ارزیابی مدل شبکه عصبی از طرح MLP با الگوریتم آموزش پس انتشار و مدل چند عاملی بهره گرفته شده است. نتایج نشان می­دهد که مدل شبکه عصبی پیشنهادی، توانایی بالایی در پیش­بینی شاخص ...

متن کامل

مقایسه مدل های شبکه عصبی با مدل سری زمانی باکس- جنکینز در پیش بینی شاخص کل قیمت سهام بورس اوراق بهادار تهران

پژوهش حاضر به مقایسه مدلهای شبکه عصبی و سری­زمانی در پیش­بینی قیمت شاخص سهام   می­پردازد. بدین جهت سه مدل از شبکه­های عصبی(پروسپترونی چند لایه ،پایه­ای شعاعی و رگرسیونی) و یک مدل از مدل­های سری­زمانی (باکس- جنکینز) مورد بررسی قرار گرفته اند. شاخص کل قیمت سهام بازار بورس تهران در بازه زمانی ابتدای فروردین 1384 تا انتهای اسفند 1388 به عنوان جامعه ­آماری انتخاب شده است. به منظور داشتن معیاری برای ...

متن کامل

پیش بینی شاخص بورس اوراق بهادار تهران با استفاده از شبکه های عصبی مصنوعی

پژوهش حاضر به مطالعه پیش بینی شاخص قیمت سهام در بورس اوراق بهادار تهران به وسیله شبکه های عصبی و ارایه ی شواهدی مبنی بر رفتار آشوبناک شاخص قیمت در بورس اوراق بهادار می پردازد. دو مجموعه از داده ها برای ورودی شبکه عصبی انتخاب شده اند. وقفه های مختلفی از شاخص و عوامل کلان اقتصادی به عنوان متغیرهای مستقل. شبکه های عصبی به کار گرفته شده در این پژوهش از نوع پرسپترون چند لایه (mlp) است که به روش الگو...

متن کامل

پیش بینی شاخص بورس اوراق بهادار تهران با استفاده از شبکه های عصبی

اندازه و روند شاخص‌های قیمت سهام یکی از مهمترین عوامل تاثیرگذار بر تصمیمات سرمایه گذاران در بازارهای مالی می‌باشد. جهت پیش‌بینی بازار از تکنیکهای مختلفی استفاده شده است که معمول‌ترین آنها روشهای رگرسیون و مدل‌های 3ARIMA هستند اما این مدل‌ها در عمل جهت پیش‌بینی بعضی از سریها ناموفق بوده‌اند. در تحقیق حاضر برای پیش‌بینی شاخص کل بورس از مدل شبکه‌های عصبی پیش خور4 با قانون یادگیری پس انتشار خطا5 در...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم اجتماعی و اقتصادی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023