روش های تکراری برای حل معادله ماتریسی

پایان نامه
چکیده

در فصل اول این پایان نامه تعاریف، نکات و قضایایی که در فصول بعدی لازم است را مرور می کنیم. در فصل دوم روش نیوتن و برنولی را برای یک معادله ماتریسی درجه دوم تعمیم می دهیم. با در نظر گرفتن ماتریس های ضرایب به شکل m-ماتریس، شرایط کافی برای وجود جواب دقیق را فراهم می آوریم. علاوه بر این نشان می دهیم که روش نیوتن و برنولی تحت شرایط کافی پیشنهادی با یک ماتریس صفر اولیه به جواب دقیق همگرا خواهد شد. در فصل سوم یک روش تکراری برای جواب متقارن مرکزی تعمیم یافته و متقارن با گام نیوتن برای حل یک چندجمله ای ماتریسی پیشنهاد می کنیم. در پایان تعدادی مثال عددی ارائه خواهیم داد که نتایج تئوری را تایید می کند.

منابع مشابه

روش های تکراری برای حل معادله های ماتریسی

در این پایان نامه بر مقاله ی an iterative method for the symmetric and skew symmetric solutions of a linear matrix equation axb+cyd =e نوشته ی xingping sheng و guoliang chen، مروری داشته ایم. در این مقاله دو روش تکراری برای حل معادله ی ماتریسی خطی axb+cyd=e ارائه شده است. روش اول جواب معادله را به صورت متقارن و روش دوم جواب معادله را به صورت پادمتقارن ارائه می دهد. تعدادی مثال های عددی را با...

روش های تکراری برای حل معادله ماتریسی خطی و دستگاه معادلات ماتریسی خطی

بسیاری از مسائل علوم کاربردی و مهندسی منجر به معادلات ماتریسی خطی میشوند. به طورکلی معادلات ماتریسی خطی را میتوان با استفاده از روشهای مستقیم و روشهای تکراری حل کرد. روشهای مستقیم به دلیل حجم زیاد محاسبات و همچنین ذخیرهسازی و سرعت محدود کامپیوترها برای حل معادلات ماتریسی خطی با ماتریس ضرایب بزرگ، به ویژه معادلات ماتریسی خطی که ماتریس ضرایب آنها تنک هستند، مناسب نیستند. برای این گونه معادلات مات...

روش های تکراری برای حل معادلات ماتریسی

در سال 2005 پنگ وهمکاران یک روش تکراری برای یافتن جواب متقارن از معادله ماتریسی axb=c ارائه داده اند. هانگ و همکاران نیز یک روش تکراری جدید برای حل معادلات ماتریسی خطی axb=c برای ماتریس پادمتقارن x ارائه کرده اند. در سال 2008 دهقان و حجاریان شرایط لازم وکافی برای قابل حل بودن معادلات ماتریسی a_1xb_1=d1,a_1x=c_1,xb_2=c_2وa_1x=c_1,xb_2=c_2,a_3x=c_3,xb_4=c_4روی ماتریس بازتابی یا غیر بازتابی x پیشن...

15 صفحه اول

روش‌های تکراری برای محصور کردن مجموعه جواب معادله ماتریسی سیلوستر پارامتری

در این مقاله، معادله ماتریسی سیلوستر پارامتری (A(p)X+XB(p)=C(p را که عناصر آن توابعی خطی از پارامترهای متغیر در بازه‌ها هستند بررسی می‌کنیم. ابتدا چند ویژگی از مجموعه جواب این معادله پارامتری را بیان می‌کنیم و سپس به کمک این ویژگی‌ها چند شرط کافی برای کرانداری مجموعه جواب ارائه می‌کنیم. پس از آن بر پایه خصوصیات مطرح شده برای مجموعه جواب، دو روش تکراری برای یافتن حصارهایی برای آن معرفی می‌کنیم. ...

متن کامل

یک روش تکراری برای حل معادلات ماتریسی خطی

در این پایان نامه ابتدا به معرفی معادله سیلوستر پرداخته و دو روش مستقیم برای حل آن ارائه می دهیم. در فصل سوم یک روش تکراری کارآمد را برای حل معادله ماتریسی خطی a(x)=e، با ماتریس حقیقی x معرفی می کنیم. می توان با استفاده از این روش تکراری حل پذیر بودن معادله ماتریسی خطی را به طور خودکار تعیین نمود. زمانی که معادله ماتریسی سازگار است، می توان برای هر ماتریس اولیهx_0، جوابی را در تعداد تکرار متناه...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023