پایدارسازی سیستم های کنترل غیرخطی با استفاده از شبکه های عصبی مصنوعی

پایان نامه
چکیده

هدف این رساله، پایدارسازی سیستم های کنترل غیرخطی از طریق شبکه های عصبی است. این کار در سیستم های غیرخطی گسسته و نیز پیوسته انجام شده است. در سیستم های گسسته نسبت به حالت پیوسته عملکرد شبکه های عصبی بهتر بود. نوع شبکه های بکار رفته شده غالباً چند لایه است که در آن، قوانین یادگیری متفاوتی بکار گرفته شده است. دو نوع یادگیری در دو حالت برخط و نه برخط انجام شده است، هر دو حالت را انجام داده و به پایداری سیستم ها رسیده ایم. در حالت نه برخط مساله یادگیری شبکه دارای انشعاب بیشتری است، گاهی مساله باناظر و گاهی بدون ناظر است. در حالت با ناظر باید مجموعه داده های آموزشی جمع آوری شود که خود این عمل به چندین طریق انجام می شود. همه این روش ها بررسی شده و برای هر حالت، مثال حل شده است. در حالت بدون ناظر لازم نیست داده های آموزشی جمع آوری شوند بلکه یک روش بهینه سازی نامقید لازم است که توسط آن روش، پارامترهای شبکه (وزن ها و بایاس ها) بهینه و به عبارت دیگر بروز شوند. در این رساله، در حالت بدون ناظر، برای بروز کردن پارامترهای شبکه، روش بهینه سازی نلدر-مید بکار رفته است.

منابع مشابه

پایدارسازی سیستم های کنترل غیرخطی با استفاده از قضیه زوبوف و شبکه های عصبی مصنوعی

در این مقاله، ما یک دسته از سیستم های کنترل غیرخطی را توسط شبکه های عصبی مصنوعی و قضیه زوبوف پایدار می کنیم. قضیه زوبوف یکی از قضایایی است که شرایطی را برای پایداری یک سیستم غیرخطی با ناحیه جذب معلوم، بیان می کند. از شبکه های عصبی استفاده کرده و توسط آنها، تعدادی از توابع موجود در قضیه زوبوف را تقریب می زنیم بدین ترتیب کنترل کننده یک سیستم کنترلی غیرخطی که به لحاظ ریاضی یافتن ضابطه آن آسان نیست...

متن کامل

پایدارسازی دستگاه های کنترل غیرخطی با استفاده از قضیه زوبوف و شبکه های عصبی مصنوعی

قضیۀ زوبوف یکی از قضایایی است که برای پایداری یک دستگاه غیرخطی با دامنه ربایش معلوم شرایطی را   بیان می کند. از شبکه های عصبی استفاده کرده و با آن ها، تعدادی از توابع موجود در قضیۀ زوبوف را تقریب می زنیم، بدین ترتیب کنترل کنندۀ یک دستگاه کنترل غیرخطی، که به لحاظ ریاضی یافتن ضابطۀ کنترل آن آسان نیست، به دست می آید. در این تحقیق دو استراتژی مختلف را به کار می گیریم و نهایتاً تأثیر و قابلیت روش های...

متن کامل

پایدارسازی دسته ای از سیستم های کنترل غیرخطی با استفاده از شبکه های عصبی مصنوعی

هدف این رساله، پایدارسازی سیستم های کنترل غیرخطی از طریق شبکه های عصبی است. این کار در سیستم های غیرخطی گسسته و پیوسته انجام شده است. در سیستم های گسسته نسبت به پیوسته عملکرد شبکه های عصبی بهتر بود. نوع شبکه های بکار رفته شده غالباً از نوع چند لایه است که در آن قوانین یادگیری متفاوتی بکار رفته است. در حالت کلی دو نوع یادگیری بنام برخط و نه برخط وجود دارد، هر دو حالت را در سیستم ها انجام داده و پ...

15 صفحه اول

مدلسازی نفوذپذیری سیستم بیوراکتورغشایی با استفاده از شبکه عصبی مصنوعی

مدلسازی برای سیستم های پیچیده ای همچون بیوراکتور غشایی به دلیل امکان اجرای آزمایشهای مجازی زیاد در زمان کوتاه ابزاری قدرتمند است، اگرچه نیازمند اعتبار تجربی و تبدیل فرایند به مدل ریاضی می باشد. در این پژوهش به مدلسازی فرایند فیلتراسیون توسط شبکه های عصبی با استفاده از نرم افزار MATLAB 8.1 (2013) پرداخته شده و از داده های تجربی یک سیستم بیوراکتور غشایی غوطه ور مجهز به غشاء کوبوتا جهت تصفیه فاضلا...

متن کامل

پیش‌بینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی

مدل‏های مفهومی ‌بر مبنای هوش مصنوعی، اغلب برای پیش‌بینی‏های کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیش‌بینی‌ها1 (ESP) و تفکیک مدل‏سازی برای متغیرهای اقلیمی‌و هیدرولوژیکی، از مدل‏های مفهومی ‌برای پیش‌بینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده می‌شود. سیستم استنتاج فازی برای پیش‌بینی بار...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور مرکز - دانشکده علوم

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023