پیش بینی نرخ ارز در ایران با استفاده از یک الگوی پیوندی ازالگوی خودرگرسیونی میانگین متحرک انباشته(arima) و شبکه عصبی مصنوعی (ann)
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران - دانشکده اقتصاد و علوم اداری
- نویسنده منصور حسین زاده
- استاد راهنما امیر منصور طهرانچیان اسمعیل ابونوری
- سال انتشار 1391
چکیده
مطالعات پیشین درخصوص افزایش دقت پیش بینی بین روند متغیرهای کلان اقتصادی، به طور معمول بر پایه الگو های سری-زمانی یا الگو های اقتصادسنجی، استوار بوده اند. با وجود این، این الگو ها با محدودیت خطی بودن مواجه هستند و با غیرخطی بودن طبیعت دنیای واقعی سازگار نیستند. الگوی خودرگرسیونی میانگین متحرک انباشته یکی از پرکاربردترین الگو های خطی در سه دهه گذشته بوده است. در مطالعات اخیر سعی شده است تا پیش بینی ها با استفاده از الگو های شبکه عصبی که با مسائل غیر خطی و پیچیده سروکار دارند، انجام شود. در مقایسه الگوهای arima وann اغلب نتایج مختلفی از نظر برتری یکی بر دیگری در عملکرد پیش بینی حاصل می شود. در این تحقیق الگوی پیوندی پیشنهاد می شود که دو الگوی arima و ann را ترکیب می کند تا از قدرت الگوهایarima وann در الگو سازی خطی و غیر خطی برای پیش-بینی نرخ ارز در ایران (به صورت ماهانه) و مقایسه آن با هر یک از الگوهای arima، ann به طور جداگانه استفاده کند.
منابع مشابه
بررسی جهش پولی نرخ ارز و پیش بینی آن با شبکه های عصبی مصنوعی در ایران
یکی از مباحث مهم در اقتصاد کلان، رابطه بین شوکهای پولی و نوسانات نرخ ارز در قالب تئوری جهش پولی نرخ ارز است. از آنجا که اقتصاد ایران طی سالهای بعد از انقلاب همواره در معرض گسترش پایه پولی قرار داشته است، لذا بررسی رابطه بین انبساطهای پولی و نوسانات نرخ ارز و متعاقباً نقش افزایش درجه شناورسازی نرخ ارز بر میزان افزایش این نوسان، موضوع و هدف اصلی مقاله حاضر را تشکیل میدهد. بر این اساس در بخش او...
متن کاملمقایسه عملکرد شبکه های عصبی مصنوعی(ann)و مدل میانگین متحرک انباشته اتورگرسیو (arima) در مدلسازی و پیش بینی کوتاه مدت روند نرخ ارز در ایران
نرخ ارز و نوسانات آن به عنوان یکی از مهمترین مسائل بخش بازرگانی خارجی هر کشور از اهمیت ویژهای برخوردار است. عوامل زیادی همچون عوامل اقتصادی، سیاسی، و روانی بر نرخ ارز تاثیرگذار هستند و این عوامل خود باعث ایجاد شرایط نااطمینانی بیشتر میشوند. در این راستا تلاش سیاستگذاران در کاهش این نااطمینانی از طریق پیشبینی این متغیر باکمترین خطا بوده است. شبکههای عصبی مصنوعی از قابلیت بالایی در مدلسازی...
متن کاملمقایسه قدرت مدل های شبکه عصبی مصنوعی و شبکه عصبی پویا در پیش بینی نرخ ارز: کاربردی از تبدیل موجک
این مطالعه تلاشی است در جهت بهکارگیری ترکیب مدل شبکهی عصبی پویا و تجزیهی موجک جهت میسر نمودن امکان انتخاب یک الگوی بهینه جهت پیشبینی متغیر مذکور میباشد. جهت تحقق این مهم، از دادههای سریزمانی ماهانهی نرخ ارز طی بازهی زمانی فروردین 1377 الی آذر 1391، که مشتمل بر 177 مشاهده بوده که از این بین، تعداد 150 مشاهده جهت مدلسازیها استفاده شده و تعداد 27 مشاهده نیز جهت شبیهسازی و یا به بیان دی...
متن کاملپیش بینی نرخ ارز یورو به دلار با تکنیک شبکه عصبی مصنوعی
پیش بینی نرخ ارز به عنوان یک متغیر اقتصادی مهم مورد علاقه فعالان اقتصادی است. یکی از رویکردهای متداول در پیش بینی، رویکرد تکنیکال است که از رفتار گذشته نرخ ارز برای پیش بینی استفاده می کند. البته با توجه به ساختار آشوب گونه و غیر خطی بازارهای مالی، نمی توان با یک روش مشخص و ساده که از ترکیب ابزارهای مختلف تکنیکال بدست می آید به پیش بینی بازار پرداخت و نیاز به روش های پیچیده تری می باشد. در دهه ...
متن کاملاستفاده از رهیافت های شبکه عصبی و مدل های خودرگرسیونی در پیش بینی رشد اقتصادی ایران
یکی از مسائل مهم در اقتصاد پیش بینی رشد اقتصادی می باشد که با توجه به اینکه، پیش بینی صحیح رشد اقتصادی، آثار مهمی در سیاست گذاری و برنامه ریزی های اقتصادی دولت دارد و می تواند علاوه بر ایجاد زمینهی توسعه روش های جدید پیش بینی، سیاست گذاران را در تصمیم گیری آتی یاری رساند، لذا هدف این مقاله پیش بینی رشد اقتصادی ایران با استفاده از سه مدل شبکه عصبی، میانگین متحرک خودرگرسیون تجمعی، خودرگرسیون وار...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران - دانشکده اقتصاد و علوم اداری
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023