حل معادلات انتگرالی و دیفرانسیل-انتگرال خطی با روش عناصر متناهی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی
- نویسنده حامد زیدآبادی
- استاد راهنما مرتضی گچ پزان اصغر کرایه چیان
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1391
چکیده
در این پایان نامه هدف یافتن جواب تقریبی رده ای از معادلات انتگرالی خطی با روش عناصر متناهی می باشد. برای این منظور از چندجمله ای های لاگرانژ به عنوان توابع پایه ای استفاده می کنیم. در ابتدا مقدمات روش را توضیح خواهیم داد، و سپس شکل کلی هر یک از انواع معادلات انتگرالی نوع دوم را در نظر می گیریم و شرایط وجود و یکتایی جواب را در مورد هر یک از آن ها بررسی خواهیم کرد. سپس به پیاده سازی روش بر روی هر یک از انواع معادلات انتگرالی می پردازیم، و با ارائه مثال هایی نشان خواهیم داد که این روش دارای جواب هایی نزدیک به جواب های دقیق می باشد. در ادامه نیز تحلیل خطای روش ذکر شده، مورد بررسی قرار می گیرد.
منابع مشابه
حل معادلات دیفرانسیل و انتگرال با توابع والش
هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...
متن کاملحل معادلات دیفرانسیل و انتگرال با توابع والش
هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...
متن کاملحل معادلات دیفرانسیل-انتگرال جزئی سهموی با توابع پایهای شعاعی گوسی و درجه دوم چندگانه معکوس
This article has no abstract.
متن کاملکاربرد روش عناصر متناهی برای حل معادلات دیفرانسیل خطی و غیر خطی
در این پایان نامه ایده های اصولی و شالود هها ی ریاضی روش عناصر متناهی ارایه می گردد. نشان خواهیم داد که چگونه روش عناصر متناهی را می توان برای معادلات دیفرانسیل با در نظر گرفتن ساختار این معادلات و روش های کارآمد بکار گرفت. هر چند این روش و قضیه های مربوط به ، موثر و کارا می باشد، اما یکتحلیل دقیق و کامل برای مسایلی در n آن نیز در فضاهایی با ابعاد فضاهای یکبعدی ارایه می شود. در ادامه شناسای...
حل معادلات انتگرال-دیفرانسیل-تفاضلی خطی و معادلات انتگرال-دیفرانسیل فردهلم خطی مرتبه بالا با استفاده از روش هم محلی
در این پایان نامه یک روش هم محلی چبیشف برای حل معادله انتگرال-دیفرانسیل - تفاضلی خطی آمیخته به طوریکه ایکس کوچکتر مساوی صفر و m بزرگتر مساوی n تحت شرایط آمیخته و هم محلی لژاندر برای حل معادله انتگرال دیفرانسیل فردهلم خطی مرتبه بالاتر تحت شرایط آمیخته ارائه شده است. در این دو روش معادله ا با شرایط 2 و معادله 3 با شرایط 4 به معادله ماتریسی که متناظر با یک دستگاه معادله جبری خطی است تبدیل می شوند....
15 صفحه اولروش گسسته عناصر متناهی برای حل معادلات دیفرانسیل تأخیری
در این پایان نامه روش گالرکین ناپیوسته بر روی معادلات دیفرانسیل تأخیری خطی مرتبه اول را بررسی می کنیم.که از چندجمله ای های رادو به عنوان پایه استفاده کرده ایم و با استفاده از آنالیز تعامد بر روی هر بازه نتایج فوق همگرایی این روش را در نقاط گره ای به دست می آوریم.
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023