مدل سازی سطح آب زیرزمینی دشت شهرکرد به وسیله شبکه های عصبی مصنوعی و تئوری موجک

پایان نامه
چکیده

مدل سازی دقیق و قابل اطمینان سطح ایستابی آب زیرزمینی می تواند به استفاده ی پایدار از آب های زیرزمینی به منظور تأمین نیاز های شهری،کشاورزی و صنعتی کمک کند. امروزه سازمان ها و شرکت های مرتبط با مهندسی آب برای این منظور از مدل های عددی استفاده می کنند. از معایب این روش ها نیاز به پارامتر های متعدد، زمان بر و پرهزینه بودن آن هاست. با توجه به روابط پیچیده ی حاکم در هیدروژئولوژی و هیدرولوژی در سال های اخیر توجه خاصی به مدل های مبتنی برهوش مصنوعی و محاسبات نرم شده است. در این تحقیق از 2 مدل شبکه های عصبی مصنوعی و مدل ترکیبی شبکه عصبی مصنوعی و تئوری موجک به منظور مدل سازی سطح آب زیرزمینی دشت شهرکرد استفاده شده است. به منظور مدل سازی در این تحقیق از اطلاعات میانگین ماهانه دما، مجموع بارندگی ماهانه و میانگین ماهانه تراز سطح آب زیرزمینی به مدت 27 سال در 3 چاه و 1 ایستگاه هواشناسی استفاده شده است. مدل شبکه عصبی مصنوعی استفاده شده در این تحقیق از نوع شبکه عصبی پرسپترون با یک لایه مخفی و الگوریتم آموزش لونبرگ مارکوارت است. برای توسعه مدل های شبکه عصبی موجکی از موجک های haar، db2، db3، db4، sym2 و sym3 در سطوح تجزیه مختلف استفاده شد. کنترل دقت محاسبات به وسیله محاسبه ضریب تعیین r2، ریشه میانگین مربعات خطا rmse، راندمان نش ساکلیف ce و میانگین قدر مطلق خطا mae صورت گرفته است. بهترین نتایج با استفاده از مدل شبکه عصبی موجکی و تبدیل موجک گسسته، با موجک های db2،db3، db4، sym2 و sym3 بدست آمد. نتایج بیانگر آن است که ترکیب تئوری موجک و شبکه های عصبی مصنوعی پیش بینی دقیق تری نسبت به شبکه های عصبی مصنوعی دارد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل سازی تراز آب زیرزمینی با بهره گیری از مدل هیبرید موجک- شبکه عصبی مصنوعی (مطالعه موردی: دشت شریف آباد)

منابع آب زیرزمینی یکی از مهم­ترین منابع تأمین آب می­باشند، از این­رو مدل­سازی آن­ها بسیار حائز اهمیت می­باشد. ارزیابی و پیش­بینی تراز آب زیرزمینی به پیش­بینی منابع آب زیرزمینی کمک می­کند. هدف این مطالعه ارزیابی عملکرد سه مدل رگرسیون خطی چندمتغیره (mlr)، مدل هیبرید موجک- شبکه عصبی (wnn) و شبکه عصبی مصنوعی (ann) در پیش­بینی سطح آب زیرزمینی (gwl)، بر مبنای دو معیار ریشه خطای مربع متوسط (rmse) و ضر...

متن کامل

مدل‌سازی تراز آب زیرزمینی با بهره‌گیری از مدل هیبرید موجک- شبکه عصبی مصنوعی (مطالعه موردی: دشت شریف‌آباد)

منابع آب زیرزمینی یکی از مهم­ترین منابع تأمین آب می­باشند، از این­رو مدل­سازی آن­ها بسیار حائز اهمیت می­باشد. ارزیابی و پیش­بینی تراز آب زیرزمینی به پیش­بینی منابع آب زیرزمینی کمک می­کند. هدف این مطالعه ارزیابی عملکرد سه مدل رگرسیون خطی چندمتغیره (MLR)، مدل هیبرید موجک- شبکه عصبی (WNN) و شبکه عصبی مصنوعی (ANN) در پیش­بینی سطح آب زیرزمینی (GWL)، بر مبنای دو معیار ریشه خطای مربع متوسط (RMSE) و ضر...

متن کامل

تخمین سطح آب زیرزمینی با استفاده از روش ترکیبی زمین آمار و شبکه های عصبی مصنوعی (مطالعه موردی: دشت شهرکرد)

از اساسی­ترین موارد در مدیریت کمی منابع آب زیرزمینی تخمین سطح آب با استفاده از داده­های برداشت شده از شبکه چاه­های مشاهده­ای می­باشد. هدف این تحقیق میان­یابی سطح آب­زیرزمینی با استفاده از الگوریتم ترکیبی زمین آمار و شبکه­های عصبی مصنوعی می­باشد و دشت شهرکرد به عنوان نمونه انتخاب شده است. بعد ازانتخاب دو ماه اسفند 1385 و شهریور 1388 به عنوان ماه­های دارای به ترتیب حداکثر و حداقل سطح آب (طی دوره ...

متن کامل

پیش بینی تراز آب زیرزمینی دشت قم به وسیله مدل ترکیبی شبکه عصبی- موجک

مدل‏های پیش‏بینی صحیح و قابل اطمینان تراز آب زیرزمینی برای مدیریت منابع آب اهمیت دارند. در سال‏های اخیر استفاده از تحلیل موجک برای تجزیه سری‏های زمانی و ترکیب آن با شبکه‏های عصبی به صورت گسترده‏ای در مدل‏سازی پدیده‏های هیدرولوژیکی به کار رفته‏است. در پژوهش حاضر کاربرد مدل‏های شبکه عصبی، ترکیبی شبکه عصبی- موجک و رگرسیون خطی چندمتغیره در پیش‏بینی تراز آب زیرزمینی هفت حلقه پیزومتر واقع در دشت قم ب...

15 صفحه اول

مدل سازی سطح آب زیرزمینی با تلفیق شبکه عصبی مصنوعی و موجک (مطالعه موردی: دشت شریف آباد)

در بسیاری از مناطق، استخراج بی¬رویه و خارج از قاعده آب¬های زیرزمینی که معمولاً به مراتب بیش از میزان تغذیه آن می¬باشد، اثرات جانبی زیان¬بار فراوانی از جمله کاهش سطح آب زیرزمینی، خشک شدن چاه¬ها، کاهش آب و یا خشک شدن قنات، چشمه¬ها و نهرها، تنزل کیفیت آب، افزایش هزینه پمپاژ و نشست زمین را در پی خواهد داشت. با وجود انعطاف¬پذیری شبکه¬های عصبی در پیش¬بینی سری¬های زمانی هیدرولوژیکی، گاهی این شبکه¬ها در...

15 صفحه اول

مقایسه روش های زمین آمار و شبکه عصبی مصنوعی در تخمین سطح آب زیرزمینی(مطالعه موردی: دشت نورآباد، استان لرستان)

زمینه و هدف: در بررسی مسایل ژئوهیدرولوژى، تغییرات سطح ایستابى از اهمیت بسیار بالایی برخوردار است. بنابراین تحقیق و پژوهش در تخمین نقاط فاقد اطلاعات ضروری می باشد. روش بررسی: یکی از روش های مهم در برآورد سطح ایستابی آب های زیرزمینی درون یابی است. طى چند دهه اخیر به دلیل وجود همبستگی مکانی بین مقادیریک متغیر در یک ناحیه مبانى علم زمین آمار  به خوبى گسترش یافته و توانایی هاى این شاخه از آمار در بر...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه شهید باهنر کرمان - دانشکده کشاورزی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023