میدان های برداری یکنوا روی خمینه های هادامار
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده علوم
- نویسنده منصوره ستارزاده
- استاد راهنما محمدرضا پوریای ولی صغری نوبختیان
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1391
چکیده
مفهوم یکنوایی بیشین در فضاهای باناخ، به خمینه های ریمانی با خمیدگی برشی نامثبت، خمینه های هادامار، تعمیم می یابد و ثابت می شود که با مفهوم نیم پیوسته بالایی معادل است. و یک روش نقطه تقریبی برای جواب عمومی مسئله ارائه می دهیم، که تعمیمی از الگوریتم نقطه تقریبی شناخته شده در فضاهای اقلیدسی است. نشان می دهیم دنباله ی تولید شده توسط الگوریتم نقطه تقریبی خوش تعریف است و همگرا به تکین میدان برداری یکنوای بیشین است. همچنین، کاربردهایی در مسائل مینیمم سازی مقید، مسائل مینیمم سازی و مسائل نابرابری تغییراتی، در غالب خمینه های هادامار ارائه می کنیم.
منابع مشابه
دورهای تحلیلی روی خمینه های مختلط
سال 1961 مایکل اتیه و هیتزبروخ برای این که کلاس دوری در همولوژی، تحلیلی باشد، شرط توپولوژیک پیدا کردند. برای این که دوری تحلیلی باشد، می بایست شرطی بدیهی برقرار باشد که منجر به حدس هاج خواهد شد. در این مقاله، شرطی از هندسه مختلط که از نظریه هاج تحمیل می شود بررسی خواهیم کرد. بخش اعظم مقاله به ایده های نظریه مانع توپولوژیک اختصاص دارد.
متن کاملروش های نقطه تقریبی برای کلاس های توابع محدب و غیر محدب روی خمینه های هادامار
در این پایان نامه روش نقطه تقریبی را برای کلاس خاصی از توابع غیر محدب، روی خمینه های هادامار بررسی می کنیم. دنباله ی تولید شده توسط این روش، خوش تعریف است. به علاوه ثابت می کنیم که هر نقطه ی انباشتگی از این دنباله، در شرایط بهینگی صدق می کند و تحت شروطی روی این دنباله، همگرایی آن برای یک می نیمم کننده بدست می آید. هم چنین روش نقطه تقریبی را با استفاده از فاصله ی برگمن برای حل مسائل بهینه سازی م...
برخی از میدان های برداری روی خمینه ریمانی با التصاق متری نیمه متقارن
موضوع محوری و بنیادی رساله حاضر بررسی برخی از میدان های برداری روی خمینه های ریمانی با التصاق متری نیمه متقارن می باشد. مطالب ارائه شده در این رساله، در سه فصل مجزا ارائه شده است. فصل اول به معرفی و بررسی خمینه های ریمانی اختصاص دارد. فصل دوم، به مطالعه همه جانبه روی خمینه های ریمانی با التصاق متر نیمه متقارن آن پرداخته می شود . موضوع محوری و بحث عمده فصل سوم در ارتباط با بررسی برخی میدان ...
15 صفحه اولدورهای تحلیلی روی خمینه های مختلط
سال 1961 مایکل اتیه و هیتزبروخ برای این که کلاس دوری در همولوژی، تحلیلی باشد، شرط توپولوژیک پیدا کردند. برای این که دوری تحلیلی باشد، می بایست شرطی بدیهی برقرار باشد که منجر به حدس هاج خواهد شد. در این مقاله، شرطی از هندسه مختلط که از نظریه هاج تحمیل می شود بررسی خواهیم کرد. بخش اعظم مقاله به ایده های نظریه مانع توپولوژیک اختصاص دارد.
متن کاملآنالیز یکنوا روی فضاهای برداری توپولوژیک مرتب
یکنوایی نقش مهمی در ریاضیات وکاربردهایش بازی می کند. آنالیز یکنوا را می توان آنالیز محدب مطلق بر پایه کلاس های خاصی از توابع مقدماتی در نظر گرفت. اولین همکاری در زمینه تحدب مطلق در مقاله[ 12 ] انجام گرفت. عبارت آنالیز یکنوا درمقاله[ 20 ] مورد استفاده قرار گرفت اما در از تمام بردارهای با مختصات نامنفی مطالعه شد. بقیه نتایج آنالیز rn آن تنها نتایج روی مخروط + درمقاله [ 11 ]یافت میشوند. پس از...
15 صفحه اولخمینه های شبه ریمانی سایا با میدان های برداری ریب همساز
در این پایان نامه به تشخیص خمینه های شبه ریمانی h-سایا پرداخته می شود، با این شرط که میدان برداری ریب بردار ویژه ی عملگر ریچی است. سپس ارتباط خمینه های شبه ریمانی h-سایا با برخی ویژگی های هندسی بررسی می شود، از جمله اینکه میدان برداری ریب، یک تبدیل همساز بی اندازه کوچک است یا ساختار شبه ریمانی سایا یک ریچی سالیتون سایا است. در پایان مشخص می شود که تا چه اندازه نتیجه های به دست آمده برای خمینه ه...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده علوم
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023