حالت ناجابجایی قضیه باناخ - استون
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان - دانشکده ریاضی و کامپیوتر
- نویسنده فرحناز فدایی باشی
- استاد راهنما غلامرضا عباسپور تبادکان سید علی تقوی
- سال انتشار 1391
چکیده
قضیه باناخ - استون در حالت ناجابجایی می گوید « فرض کنیم x و y دو فضای فشرده و هاسدورف باشند اگریک یکریختی طولپا از(c(x به (c(y وجود داشته باشد آنگاه x و y یکسانریخت هستند».در این پایان نامه، قضیه باناخ – استون را به حالت ناجابجایی گسترش داده، به این مفهوم که *c-جبر لیمینال a توپولوژی فضای ایده آل اولیه ی آن را تعیین می کند.در این پایان نامه، قضیه باناخ - استون را به حالت غیرجابجایی گسترش داده، به این مفهوم که *c-جبر لیمینال a توپولوژی فضای ایده آل های اولیه ی آن را تعیین می کند. در حقیقت نشان می دهیم اگر a وb دو *c –جبر لیمینال باشند و یک یکریختی از a بتوی b باشد، آنگاه فضای اید ه آل های اولیه prim(a)) a) و فضای ایده آل های اولیه b یکسانریخت هستند.از آنجایی که هر *c-جبر جابجایی لیمینال است، اگر a و b را با جبر جابجایی (c(x و (c(y جایگزین کنیم داریم prim(a)=x وprim(b)=y وقضیه مذکور تبدیل به قضیه مشهور باناخ – استون در حالت جابجایی می شود.
منابع مشابه
ساختار قضیه باناخ-استون
با بررسی قضیه های کلاسیک باناخ-استون، گلفاند-کلموگروف و کاپلانسکی در می یابیم، یک فضای هاسدورف فشرده x منحصراً به وسیله ساختار طولپای خطی، ساختار جبری و ساختار شبکه ای به ترتیب از فضای c(x) تعیین می شوند. در این پایان نامه نشان داده شده است، برای زیر فضاهای نسبتاً عمومی a(x) و a(y) به ترتیب از c(x) و c(y) هر دوسویی خطی t ازa(x) به a(y) به یک همسان ریختی h از x به y منجر می شود که در آن t یک عملگر...
حالت های همدوس در مکانیک کوانتومی ناجابجایی
در میان حالت های کوانتومی میدان تابشی، حالت های همدوس جایگاه ویژه ای را به خود اختصاص داده اند. از نظر تاریخی مفهوم حالت های همدوس نخستین بار توسط شرودینگر ضمن مطالعه رفتار دینامیکی نوسانگر هماهنگ کوانتومی معرفی شد. در واقع این حالت ها پلی برای گذار از مکانیک کلاسیک به مکانیک کوانتومی هستند. پس از آن تلاش های زیادی در زمینه تعمیم این حالت ها صورت گرفت. هم چنین در سال های اخیر مبحث فضای ناجابجای...
قضیه ی کملوس در فضاهای تابعی باناخ
قضیه ی کملوس در سال 1967 برای فضاهای l1(µ) توسط کملوس مطرح گردید و کاترجی در سال 1970 این قضیه را به فضاهای lpکه (1?p<2) تعمیم داد. لینارد در سال 1993 عکس قضیه ی کملوس را برای زیر مجموعه های محدب از ( l1(µمورد بررسی قرار داد. در سال 1996 بالدر و هس دو تعمیم از قضیه ی کملوس را بیان کردند و در سال 2010 دی و لینارد این قضیه را برای فضاهای تابعی باناخ نیز ثابت کردند. سرانجام قضیه ی کملوس در سال 2...
15 صفحه اولمرزهای تعمیم یافته و قضایای از نوع باناخ-استون
در این رساله ابتدا برای فضاهای فشرده و هاوسدورف x وy به بررس طولپای خطی-حقیقی مانندt از زیر فضایa از c(x) بهc(y می پردازیم و در حالتی کهa یک جبریکنواخت روی x است، توصیفی برایt ارائه می دهیم. سپس نتایج بهتری را برای زمانی که t(a)دارای خواص بیشتری باشد ارائه می کنیم، بعلاوه نتایجی مشابه را برای حالتی که t یک طولپا از فضای تابعیa به روی زیر فضاهای حقیقی ازc(y) باشد که در شرط جداسازی خاصی صدق می کن...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان - دانشکده ریاضی و کامپیوتر
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023