وفقی کردن عرض کرنل و تنک سازی برخط در شبکه عصبی حداقل میانگین مربعات مبتنی بر کرنل

پایان نامه
چکیده

یادگیری را می توان به دو دسته کلی یادگیری دسته ای و یادگیری برخط تقسیم کرد. یادگیری برخط معمولا در مسائلی که کلیه داده ها موجود نباشد و به پاسخی مناسب در زمانی کم نیاز باشد، کاربرد دارد. روش های مختلفی برای یادگیری برخط ارائه شده است که هر یک سعی دارند تا به بهترین جواب برسند. اما هنگامی که داده ها ساختاری غیرخطی و نامحدب داشته باشند، روش های کلاسیک یادگیری قادر به افراز صحیح داده ها نمی باشند. یادگیری مبتنی بر کرنل، یک راه حل مناسب برای چنین مسائلی می باشد. اما مشکلاتی که این روش ها با آن درگیرند، نیاز به تنظیم مناسب پارامترهای به کار رفته در کرنل مربوطه و وابستگی مرتبه پیچیدگی مسئله با تعداد نمونه ها می باشد. در این پایان نامه، سعی شده است تا در ابتدا، مسئله انتخاب بهترین پارامتر کرنل (که در اینجا پارامتر عرض کرنل گوسی می باشد)، به روشی برخط و به منظور کاهش خطا، در شبکه عصبی حداقل میانگین مربعات (خطا) مبتنی بر کرنل ارائه و حل شود. سپس از معیاری کارا، درجهت ممانعت از رشد پیچیدگی منطبق بر داده ها، استفاده شده تا این روش مبتنی بر کرنل، به معنای واقعی به روشی کارا و برخط تبدیل شود. نتایج آزمایش ها روی مجموعه داده های واقعی و مصنوعی نشان از برتری روش پیشنهادی دارند.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیاده سازی سخت افزاری هسته حذف نویز وفقی مبتنی بر الگوریتم حداقل میانگین مربعات با کمترین منابع مصرفی

در این مقاله پیاده سازی سخت افزاری هسته حذف نویز فعال ارائه می‌گردد. فیلترهای وفقی در زمینه‌های مختلفی مانند پردازش سیگنال، رادار، سونار، شناسایی کانال و غیره مورد استفاده قرار می‌گیرند. فیلترهای وفقی با پاسخ ضربه محدود به دلیل حجم کم محاسبات و فاز خطی بسیار محبوب می‌باشند. الگوریتم حداقل میانگین مربعات برای آموزش ضرایب این فیلترها مورد استفاده قرار می‌گیرد. پیشرفتهای چشمگیر در زمینه قطعات نیمه...

متن کامل

پیاده سازی سخت افزاری هسته حذف نویز وفقی مبتنی بر الگوریتم حداقل میانگین مربعات با کمترین منابع مصرفی

در این مقاله پیاده سازی سخت افزاری هسته حذف نویز فعال ارائه می‌گردد. فیلترهای وفقی در زمینه‌های مختلفی مانند پردازش سیگنال، رادار، سونار، شناسایی کانال و غیره مورد استفاده قرار می‌گیرند. فیلترهای وفقی با پاسخ ضربه محدود به دلیل حجم کم محاسبات و فاز خطی بسیار محبوب می‌باشند. الگوریتم حداقل میانگین مربعات برای آموزش ضرایب این فیلترها مورد استفاده قرار می‌گیرد. پیشرفتهای چشمگیر در زمینه قطعات نیمه...

متن کامل

بهینه‌سازی وزن‌ها در کرنل مرکب برای طبقه‌بند مبتنی بر نمایش تنک کرنلی

طبقه‌بند مبتنی بر نمایش تنک (SRC)یکی از الگوریتم‌های موفق در ترکیب مفاهیم مطرح در دو حوزه نمونه‌برداری فشرده و آموزش ماشین است. در SRC، هر نمونه بر اساس ترکیب خطی تنکی از نمونه‌های آموزشی نمایش داده می‌شود. با توجه به موفقیت‌های اولیه این الگوریتم، فرم کرنلیزه آن (KSRC) نیز ارائه شده که در آن داده‌ها با استفاده از تابع کرنل به طور غیر صریح به فضای ویژگی جدیدی با ابعاد بالاتر نگاشت یافته و سپسSR...

متن کامل

وفقی سازی شعاع کرنل در تخمین موقعیت اجسام متحرک بر اساس الگوریتم بازنمونه برداری فیلترذره

تعیین مناسب شعاع کرنل یکی از پارامترهای بحرانی ردیابی مبتنی بر چگالی کرنل می باشد، که تاکنون راهکار کامل و بی عیبی برای آن بیان نشده است. در این مقاله از یک روش لبه یابی با الگوریتم ردیاب مبتنی بر کرنل برای وفقی سازی شعاع آن استفاده می شود و از ترکیب آن  با الگوریتم بازنمونه برداری فیلترذره، به یک الگوریتم ردیابی مقاوم و با دقت دست می یابد. بعد از تخمین چگالی کرنل مناسب، هیستوگرام وزندارشده مدل...

متن کامل

پیاده سازی سخت افزاری هسته حذف نویز وفقی مبتنی بر الگوریتم حداقل میانگین مربعات با کمترین منابع مصرفی

در این مقاله پیاده سازی سخت افزاری هسته حذف نویز فعال ارائه می گردد. فیلترهای وفقی در زمینه های مختلفی مانند پردازش سیگنال، رادار، سونار، شناسایی کانال و غیره مورد استفاده قرار می گیرند. فیلترهای وفقی با پاسخ ضربه محدود به دلیل حجم کم محاسبات و فاز خطی بسیار محبوب می باشند. الگوریتم حداقل میانگین مربعات برای آموزش ضرایب این فیلترها مورد استفاده قرار می گیرد. پیشرفتهای چشمگیر در زمینه قطعات نیمه...

متن کامل

یک شبکة عصبی جدید مبتنی بر کرنل با کاربرد در آشکارسازی اهداف دریایی

آشکارسازی اهداف دریایی در ناوبری و کاربردهای نظامی حائز اهمیت است. نویز محیطی و درهم ریختگی دریا دو مشکل عمده در آشکارسازی اهداف دریایی است. یک شبکة عصبی جدید در فضای کرنل (NNKS) برای دسته‌بندی داده ارائه می‌شود که همراه با یک سیستم عصبی کرنلی برای آشکارسازی اهداف دریایی (KNNS) است. این سیستم به‌طور ویژه در تصاویر نویزی، تصاویر دارای برهم ریختگی و تصاویر با پس زمینه پیچیده که روش‌های معمول عملک...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده مهندسی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023