حل معادلات دیفرانسیل کسری با روش موجک لژاندر

پایان نامه
چکیده

در این پایان نامه ابتدا مطالب اولیه را معرفی می کنیم؛ سپس به بحث اصلی که در مورد شرایط کافی برای وجود و یکتایی جواب معادله ی دیفرانسیل کسری (d^? y(t)=f(t,y(t),d^? y(t) (1<??2 0<??1 , ) با شرایط اولیه ی y(0)=0 و y(0)=1 یا با شرایط مرزی y(0)=y_° و y(1)=y_1 می باشد می پردازیم و همچنین حل این نوع معادلات با روش موجک لژاندر را بیان می کنیم . برای ارائه ی حل عددی این دسته از معادلات لازم است که یک عملگر ماتریس از انتگرال مرتبه کسری را معرفی نماییم . این عمل موجب می شود که معادله به یک سیستم معادله ی جبری تبدیل شود. همچنین مثال هایی گویا برای نشان دادن کاربرد و سادگی روش موجک لژاندر ارائه می دهیم.

منابع مشابه

روش موجک برای حل معادلات دیفرانسیل کسری

در حال حاضر محاسبات کسری مورد توجه بسیاری از پژوهشگران قرار گرفته است. همچنین معادلات دیفرانسیل کسری در رشته های مختلف علوم مانند مکانیک، فیزیک، زیست شناسی و مهندسی به کار برده می شوند. به علت افزایش کاربرد این دسته از معادلات توجه ویژه ای به روش های عددی و دقیق معادلات دیفرانسیل کسری شده است. اخیرا استفاده از ماتریس های عملیاتی از مرتبه کسری برای حل معادلات دیفرانسیل مرتبه کسری توسعه پیدا کرده...

15 صفحه اول

حل عددی معادلات دیفرانسیل معمولی کسری با روش گالرکین ناپیوسته موضعی

در این مقاله، روش گالرکین ناپیوسته‌ی موضعی برای حل معادلات دیفرانسیل معمولی با مرتبه‌ی کسری را در حالت کلی به کار می‌بریم.  در این روش انتخاب (طبیعی) شار عددی آپویند، ما را قادر می‌سازد تا مسائل مقدار اولیه برای معادلات کسری معمولی را به صورت بازه به بازه و پیشرو در زمان حل کنیم. این بدین معنی است که ما بایستی در هر زیربازه به حل یک دستگاه معادلات از مرتبه پایین $(k+1)times (k+1)$...

متن کامل

حل معادلات دیفرانسیل کسری با روش تبدیل دیفرانسیل و حل معادلات انتگرو-دیفرانسیل کسری با استفاده از برخی موجک ها

چکیده بسیاری از مسائل مهم فیزیکی و مکانیکی به معادلات انتگرو-دیفرانسیل منجر می شوند، ولی در عمل تعداد کمی از این معادلات را می توان به روش تحلیلی حل کرد و جواب دقیق آن ها را بدست آورد. بنابراین از روش های عددی برای محاسبه جواب تقریبی آن ها استفاده می کنیم. در این پایان نامه از موجک های سینوس-کسینوس و ماتریس عملیاتی آن برای بدست آوردن جواب عددی معادلات انتگرو-دیفرانسیل غیرخطی از مرتبه کسری است...

15 صفحه اول

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

متن کامل

استفاده از موجک لژاندر وچند جمله ای های بسل در حل معادلات دیفرانسیل کسری و معادلات انتگرو-دیفرانسیل

نام خانوادگی دانشجو: جغتایی نام: ماهمنظر ش دانشجویی:8913132035 استاد راهنما: دکتر محمدتقی خداداد استاد مشاور: دکتر مهدی زعفرانیه دانشکده: ریاضی و علوم کامپیوتر رشته: ریاضی کاربردی گرایش: آنالیز عددی مقطع: کارشناسی ارشد تاریخ دفاع: 14/7/92 تعداد صفحات: 111 عنوان پایان نامه: استفاده از موجک لژاندر و چندجملهایهای بسل در حل معادلات دیفرانسیل کسری و معادلات انتگرو - دیفرانسیل کلیدواژه ها: ...

حل معادلات دیفرانسیل معمولی-جزئی مرتبه کسری با موجک هار

هدف از این پایان نامه معرفی موجک هار و بیان کاربردهای آن است که در پنج فصل گنجانده شده است. ابتدابه بیان تعاریف اولیه و روابط معادلات دیفرانسیل کسری می پردازیم. سپس توابع موجک هار و لژاندر را مطالعه می کنیم. در ادامه معادلات کلاین گوردن و سینوی-گوردن و نقطه جنبشی نوترون را معرفی می کنیم.

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی (نوشیروانی) بابل - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023