عملگرهای بطورضعیف فشرده وتوپولوژی قوی*روی فضای باناخ
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم
- نویسنده سمیه ابراهیمی
- استاد راهنما حبیب امیری هادی خطیب زاده
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1391
چکیده
توپولوژی قوی* s*(x) از فضای باناخ x که با s*(x) نشان داده می شود، یک توپولوژی موضعاً محدب تولید شده توسط شبه نرم های x?||sx|| است که در آن s روی نگاشت های خطی کراندار از x به توی فضاهای هیلبرت تغییر می کند.w.r- توپولوژی ?(x) برای xتوپولوژی موضعاً محدب قوی تری است که به طور مشابه با جایگزین کردن فضاهای باناخ انعکاسی به جای فضاهای هیلبرت در s*(x) به دست می آید. برای هر فضای باناخ y نگاشت خطی t:x?y به طور ضعیف فشرده است زمانی که t از w.r- توپولوژی به توپولوژی نرمی روی yپیوسته باشد. نتیجه ی اصلی انطباق این دو توپولوژی روی مجموعه های نرم کراندار را ثابت می کند.
منابع مشابه
عملگرهای ابردوری روی فضای باناخ
در این پایان نامه ابتدا به بررسی عملگرهای خطی کراندار با مدار چگال می پردازیم و با بیان ارتباط بین محک ابردوری و سایر روشهای معادل آن، شرطهای لازم و کافی برای ابردوری بودن عملگرها به خصوص عملگرهای روی (b(x ، یعنی فضای عملگرهای پیوسته روی فضای باناخ x ارایه می کنیم. سپس به عملگرهای ترکیبی و ترکیبی وزندار روی فضای هیلبرت از توابع تحلیلی اشاره کرده و در نهایت ابردوری بودن آنها را بررسی می کنیم.
15 صفحه اولیکتایی توسیع هان باناخ تابعک های تعریف شده روی فضای عملگرهای فشرده
قضیه هان باناخ بیان می دارد که برای یک تابعک خطی تعریف شده روی زیرفضای m از یک فضای خطی نرم دار مانند e، حداقل یک توسیع حافظ نرم به تمام فضای e وجود دارد. بحث اصلی این پایان نامه، مطالعه زیرفضاهایی است که این توسیع برای آنها یکتا است. به این زیرفضاها، زیرفضاهایی با خاصیت u یا زیرفضاهای باناخ هموار گویند. اگرچه خاصیت u توسط فلپس [41] در سال 1960 معرفی شد، اما پیش از آن تیلور [52] و فوگل [11] نش...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023