استفاده از روش های خوشه بندی برای انتخاب ورودی های موثردر مدل سازی بارش-رواناب با استفاده از روش موجک-شبکه عصبی

پایان نامه
چکیده

در مدلسازی بارش-رواناب مدل ترکیبی شبکه عصبی-موجک روشی سودمند است که از تبدیل موجک برای بدست آوردن فرکانس های مختلف فرآیند و از شبکه عصبی مصنوعی (ann) برای پیش بینی دبی رواناب استفاده میکند. یکی از گامهای مهم در هر مدلی که بر پایه ann است، تعیین متغیرهای ورودی مهم در فرایند مورد مطالعه است. درغیر این صورت مدل می تواند دچار بیش سازگاری (over fitting)، یادگیری دشوارتر و عملکرد ضعیف شبکه شود. این پایان نامه یک مدل سه مرحله ای برای مدلسازی بارش-رواناب حوضه ی delaney creek در ایالت فلوریدا آمریکا ارائه می دهد. روش سه مرحله ای عموما شامل پیش پردازش و ساخت مدل است. در مرحله ی پیش پردازش تبدیل موجک برای تجزیه ی سری های زمانی بارش و رواناب به زیرسری هایی با فرکانس های مختلف استفاده شده است. سپس زیرسری های مستقل توسط روش نقشه های خود سازمانده (som) انتخاب شده اند. در مرحله ی مدلسازی زیرسری های انتخاب شده وارد شبکه عصبی پیش رو می شود تا رواناب یک روز آینده پیش بینی شود. برای تفسیر بهتر عملکرد مدل، مدل ترکیبی ارائه شده با مدل های فرآیندهای میانگین متحرک جمع بسته ی اتورگرسیو با ورودی خارجی (arimax) و شبکه عصبی پیش رو بدون پیش پردازش داده ها مقایسه شده است. نتایج نشان داد که مدل ارائه شده عملکرد بهتری در مقایسه با دو روش دیگر مخصوصا در تعیین ضریب تبیین نقاط بیشینه دارد. به طوریکه مدل های arimax، شبکه عصبی پیشرو بدون پیش پردازش داده ها و مدل ارائه شده به ترتیب مقادیر 0.82، 0.84 و 0.97 را برای ضریب تبیین ارائه دادند.

منابع مشابه

مدل سازی پیش بینی گردشگری ورودی به ایران با استفاده از روش هایARIMA و شبکه های عصبی فازی

صنعت گردشگری به عنوان یک صنعت پاک و اشتغالزا، در سال‎های اخیر جزء درآمدزاترین صنایع جهان بوده و همواره مورد توجه سیاست‎ها و برنامه‎های توسعه گرانه می‎باشد. دولت‎ها و بخش‎های خصوصی در سطوح کلان تا خرد جهت توسعه و بقاء در بخش گردشگری نیازمند پیش‎بینی تقاضا در این بخش می‎باشند. هر چند که اکثر مطالعات انجام گرفته جهت پیش‎بینی تقاضا در گردشگری از روش‎های کمی استفاده کرده‎اند ولی رویکردها و روش‎های ک...

متن کامل

مدل سازی بارش- رواناب روزانه با استفاده از شبکه های عصبی مصنوعی تحت ورودی های مختلف

هدف از این تحقیق بررسی توانایی سناریوهای مختلف شبکه های عصبی شامل شبکه های عصبی پرسپترون چند لایه(mlp) وشبکه های عصبی با پایه شعاعی(rbf) در مدل سازی فرآیند بارش- رواناب در مقیاس روزانه، که بطور عمده برای درک کنترل و مدیریت منابع آب مورد نیاز هستند، می باشد. تبدیل بارش- رواناب به علت تغییرات شدید زمانی و مکانی آن،یکی از پیچیده ترین مسائل در طبیعت می باشند، و وجود روابط قوی و غیرخطی میان متغیرها ...

پویاسازی خوشه بندی مشتریان با استفاده از روش DEA-DA در بستر شبکه عصبی مصنوعی SOM

چکیدهامروزه ارزیابی مشتریان برای ارائه خدمات مناسب یکی از مهم ترین چالش های مدیران و تصمیم گیرنددگان درسازمانهای مختلف است. در سازمانهای مختلف گاه با توجه به حجم سنگین تقاضای مشتریان پاسخ گدویی بدهنیازهای تمامی آنان امکان پذیر نیست و از سدوی دیگدر ایدن مشدتریان بده عندوان سدرمایه هدای سدازمان ها قلمددادمی شوند. این موضوع هدفمند نمودن مطالعده بدر روی گدرو ه هدای مختلدف مشدتریان در بازارهدای رقدا...

متن کامل

آزمون حافظه سیگنال سری زمانی و شبیه‌سازی فرایند بارش-رواناب با استفاده از مدل‌های شبکه عصبی و ترکیب موجک-عصبی

‌در پژوهش حاضر، حافظه بلندمدت و رفتار دینامیکی سیگنال سری زمانی جریان روزانه رودخانه خرم‌آباد که حوزه آبخیز آن کوهستانی و دارای کاربری شهری است، با استفاده از نمایه هرست بررسی شده است. مقدار نمایه هرست سیگنال رواناب رودخانه خرم‌آباد در بازه زمانی سال‌های 1370 تا 1393 برابر با 0.8 به‌دست آمد. این مقدار نشان از حافظه بلندمدت و دینامیک غیر خطی سیگنال رواناب این رودخانه دارد. در ادامه، با به‌کارگیر...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده عمران

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023