روش عمومی برای قانون قوی اعداد بزرگ
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم ریاضی
- نویسنده محمد رضا داودی گشتی
- استاد راهنما علی اصغر ور سه ای
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1391
چکیده
در این پایان نامه یک روش عمومی برای اثبات قانون قوی اعداد بزرگ با استفاده از احتمال دم بیشینه ارائه میشود و از آن نرخ همگرایی هم برای دنباله های مرتبط مثبت و هم برای دنباله های مرتبط منفی بدست می آید و نشان داده میشود که نرخ همگرایی در این حالتها نزدیک به نرخ همگرایی در حالت متغیر های تصادفی مستقل است.
منابع مشابه
نامساوی نوع لوی و نگرشی دیگر بر قانون قوی اعداد بزرگ برای متغیرهای تصادفی وابسته
یک نامساوی مهم برای توزیع ماکسیمم متغیرهای تصادفی مستقل نامساوی لوی است. در این مقاله یک نسخه از این نامساوی برای متغیرهای به طور ضعیف وابسته منفی ارایه می گردد. قانون قوی برای متغیرهای وابسته توسط مولفین مختلفی مورد بررسی قرار گرفته اند. در این تحقیق، همچنین، همگرایی کامل وزنی برای آرایه ای از متغیرهای تصادفی سطری وابسته منفی کراندار احتمالی بدست می آید. همگرایی کامل و قانون قوی برای چنین خانو...
متن کاملقانون قوی اعداد بزرگ برای مجموع وزنی متغیرهای تصادفی همبسته منفی
از قضایای مهم در نظریه احتمال قضایای حدی میباشند.در میان این قوانین قان.ن قوی اعداد بزرگ از اهمیت خاصی برخوردار است.این قاونو اولین بار در سال 1713میلادی مطرح شد.سالها بعد با معرفی مفهوم همبستگی منفی برای متغیرهای تصادفی دانشمندان بسیاری به بررسی همگرایی کامل برای متغیرهای تصادفی همبسته منفی پرداختند.ما نیز در این پایاننامه به بررسی همگرایی کامل برای متغیرهای تصادفی همبسته منفی پرداخته ایم.
15 صفحه اولقانون قوی اعداد بزرگ وقضیه حد مرکزی برای متغیرهای تصادفی مجموعه_مقدار فازی
هدف اصلی در این پایان نامه، بیان قانون قوی اعداد بزرگ و قضیه حد مرکزی برای متغیرهای تصادفی مجموعه-مقدار فازی نسبت به متر هاسدورف توسعه یافته می باشد.برای این منظور، ابتدا مفاهیم مربوط به متغیرهای تصادفی مجموعه-مقدار به خصوص متغیرهای تصادفی مجموعه-مقدار فازی رامعرفی می کنیم.سپس نتایجی را ثابت می کنیم که به عنوان مقدمه ای بر اثبات قانون قوی اعداد بزرگ به شمار می روند.پس از آن قانون قوی اعداد بزرگ...
15 صفحه اولقضایای حدی و قانون اعداد بزرگ
مطالعه قضایای حدی و قانون اعداد بزرگ در نظریه احتمال به جهت ارتباط جنبه های عملی و تئوری نظریه کلاسیک اهمیت زیادی دارد. فرض کنیم {xn, n?1} دنباله ای از متغیرهای تصادفی با مقادیر حقیقی روی فضای احتمال (?, f, p) و sn???xi آنگاه بر حسب اینکه sn - an/bn در احتمال یا تقریبا همه جا به صفر همگرا باشد قانون ضعیف اعداد بزرگ و قانون قوی اعداد بزرگ را خواهیم داشت {an, n?1} دنباله ای از اعداد حقیقی و {bn, ...
15 صفحه اولقانون ضعیف اعداد بزرگ برای مجموع های وزن دار متغیرهای تصادفی وابسته
دو قضیه ای که در مقاله سانگ در رابطه با قانون ضعیف اعداد بزرگ آورده شده است در این کار با ضعیف کردن شرایط تعمیم داده شد. همچنین همگرایی در میانگین آرایه های nqd بررسی شد.
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم ریاضی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023