روش دوخطی هیروتا برای جواب های سولیتونی چندگانه و مقایسه با روش تجزیه آدومین
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم ریاضی
- نویسنده رکسانا آسایش
- استاد راهنما جعفر بی آزار
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1389
چکیده
نظریه سولیتون یکی از مهمترین موضوعات در ریاضیات کاربردی و فیزیک به شمار میرود. روش دوخطی هیروتا مشهورترین روشی است که برای ساختن جوابهای سولیتونی چندگانهی معادلات دیفرانسیل غیرخطی بهکار میرود. در این پایاننامه روش دوخطی هیروتا شرح داده شده و با استفاده از آن جوابهای سولیتونی چندگانهی چند معادله تکامل تدریجی بهدست محاسبه میشوند. به منظور (adm) میآیند. سپس جوابهای تقریبی برای آن معادلات با استفاده از روش تجزیه آدومین گسترش بازههای همگرایی، از تقریب پید استفاده میشود. تمامی محاسبات با استفاده از نرم افزار میپل 15 انجام شده است
منابع مشابه
جواب های سولیتونی دستگاه های انتگرال پذیر و روش هیروتا
در این پایان نامه، یک روش موثر برای به دست آوردن جواب های n- سولیتون برخی از معادلات دیفرانسیل با مشتقات جزیی غیر خطی بیان شده است. ما با استفاده از روش دو خطی هیروتا، جواب های n- سولیتون معادله یkdv: u_t+6uu_x=u_xxx, را برای n=1,2,3 به دست خواهیم آورد. همچنین، روش آشفتگی را برای معادله ی kdv در شکل دو خطی منفرد، که از جانشینی لگاریتمی به دست آمده است، برای تولید جواب های دقیق چند سولیتون ...
15 صفحه اولروش هیروتا برای جواب های چند سولیتونی معادلات امواج آب های کم عمق
ما در این پایان نامه علاقه مند هستیم ، که جواب های چند سولیتونی سه مدل معادله ی موج های آب کم عمق را به دست آوریم. سه مدل معادله به طور کامل انتگرال پذیر هستند. از روش دو خطی هیروتا برای تعیین جواب های چند سولیتونی این معادلات استفاده خواهیم کرد. روش tanh-coth را نیز برای به دست آوردن جواب یگانه سولیتون و سایر جواب های این سه معادله به کار خواهیم برد. مشخص خواهد شد که در روش دو خطی هیروتا، این ...
15 صفحه اولمقایسه توانایی روش های آدومین و آدومین-دوان راچ برای حل یک معادله دیفرانسیل غیرخطی مرتبه چهارم با مقادیر مرزی
در مقاله حاضر، یک معادله دیفرانسیل غیر خطی مرتبه چهارم با چهار شرط مرزی مشخص با استفاده از روش اصلاح شده تجزیه ی آدومین-دوان راچ حل شده است. اصلاحیه روش آدومین از حل یک سری معادلات جبری غیر خطی در تعیین ضرایب مجهول با ریشه های مضاعف جلوگیری کرده و در نتیجه سری بدست آمده از روش آدومین با سرعت زیادی به جواب دقیق همگرا می شود. در این روش شرایط مرزی قبل از تعیین ضرایب چند جمله ای های آدومین اعمال م...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم ریاضی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023