روش توابع دورگه برای حل معادلات انتگرال ولترا و فردهلم نوع دوم

پایان نامه
چکیده

در این پایان نامه روش توابع دورگه ی لژاندر- ضربه ای قطعه ای برای حل عددی معادلات انتگرال ولترا و فردهلم نوع دوم بیان ‎شد‎ه است‎.‎‎‎‎‎ این روش یک روش عملگری برای حل معادلات انتگرال است که با استفاده از ماتریس های عملگری انتگرالی و ضربی‏، معادلات انتگرال را به یک دستگاه معادلات جبری حل پذیر تبدیل می کند. در ادامه چند روش دیگر که اساس کار آنها نیز استفاده از ماتریس های عملگری است‏، برای حل عددی این دسته از معادلات انتگرال مطرح شده است. به علاوه با انجام یک مقایسه ی عددی کارآیی این روش ها مورد بررسی قرار گرفته است.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روش محاسباتی برای حل معادلات انتگرال ولترا- فردهلم ترکیبی غیرخطی

در این مقاله، حل معادلات انتگرال ولترا - فردهلم ترکیبی غیرخطی، بااستفاده ازتوابع بلاک - پالس اصلاح شده سه بعدی(m3d-bfs) بررسی شده است. این روش معادلات انتگرال ولترا - فردهلم ترکیبی غیرخطی را به دستگاه معادلات غیرخطی جبری تبدیل می کند. شرح مثال ها گویای کارایی و سادگی روش ارایه شده می باشد.

متن کامل

‏به‌کارگیری موجک چبیشف‏ نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم

در این مقاله‏، حل عددی معادلات انتگرال فردهلم فازی نوع دو‏م با به‌کارگیری موجک چبیشف‏ نوع دوم را مورد بررسی قرار می‌دهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگی‌های اولیه موجک چبیشف‏ نوع دوم‏، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دو‏م‏، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی می‌نماییم. سپس با به‌کارگیری موجک چبیشف‏ نوع دوم و به...

متن کامل

کاربرد توابع متعامدمثلثی برای حل معادلات انتگرالی فردهلم نوع دوم و معادلات انتگرالی ولترا-فردهلم

در این پژوهش مجموعه ای از توابع مثلثی متعامد متمم را معرفی نموده ایم که از مجموعه توابع بلاک پالس بدست آمده اند. سپس ماتریس عملگر انتگرال در دامنه توابع مثلثی متعامد محاسبه شده و روابط آن ها با ماتریس عملگر انتگرال دامنه توابع بلاک پالس نشان داده شده است. از توابع مثلثی متعامد برای بدست آوردن جواب معادلات انتگرالی فردهلم خطی نوع دوم و معادلات انتگرالی ولترا - فردهلم غیر خطی استفاده شده است. با ...

روش لتیس-نیستروم برای حل معادلات انتگرال فردهلم نوع دوم

چکیده ما در این رساله به حل معادلات انتگرال و انتگرال-دیفرانسیل با هسته پیچشی در فضای وزن دارکروبوف می پردازیم. این فضاها با پارامتر همواری ?>1 و وزن های ?_1??_2?? مشخص می شوند. وزن ?_j رفتار تابع را نسبت به متغیر j ام نشان می دهد. ما جواب معادله های اخیر را به روش لتیس-نیستروم و با استفاده از نقاط لتیس رتبه یک تقریب می زنیم. بدترین حالت خطا را در نرم سوپریمم بررسی می کنیم و نشان می دهیم که ...

15 صفحه اول

حل معادلات انتگرال فردهلم با استفاده از توابع چندمقیاسی برنشتاین

در این مقاله، روش های عددی کارا برای پیدا کردن جواب معادلات انتگرال فردهلم خطی و غیرخطی نوع دوم بر اساس پایه توابع چند مقیاسی برنشتاین ارائه می شوند. در ابتدا، ویژگی های این توابع که به صورت ترکیب خطی از توابع بلاک پالس بر بازۀ (1، 0] و چندجمله ای های برنشتاین هستند به همراه  ماتریس عملیاتی دوگان آن ها ارائه می شوند. سپس از این ویژگی ها برای تبدیل معادلۀ انتگرال مورد نظر به معادله ای ماتریسی هم...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه یزد - دانشکده ریاضی

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023