هم متناهی بودن مدول های کوهمولوپی موضعی تعمیم یافته
پایان نامه
- دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه
- نویسنده آرام شقاقی
- استاد راهنما شیرویه پیروی ابراهیم وطن دوست
- سال انتشار 1391
چکیده
در این پایان نامه ارتباط بین هم متناهی و مینیماکس بودن مدول های کوهمولوژی موضعی تعمیم یافته مورد بررسی قرار گرفته است.ابتدا نشان می دهیم که یک مدول کوهمولوژی موضعی چه شرایطی می تواند داشته باشد کهhom آن با تولید متناهی باشد همین طور این موضوع را برای مدول های کوهمولوژی موضعی تعمیم یافته بررسی می کنیم. همچنین به ارتباط بین مدول های لسکرین ضعیف و هم متناهی ضعیف بودن مدول های کوهمولوژی موضعی تعمیم یافته می پردازیم. نشان می دهیم با چه شرایطی مدولhom یک مدول لسکرین ضعیف است.
منابع مشابه
هم متناهی بودن مدول های کوهمولوژی موضعی تعمیم یافته
هدف این پایان نامه بررسی ساختار مدول های کوهمولوژی موضعی تعمیم یافته است.
هم متناهی و متناهی بودن مدول های کوهمولوژی موضعی تعمیم یافته
فرض می کنیم r یک حلقه موضعی (نوتری) و جابجایی، i یک ایده آلی از r و m، n دو -r مدول با تولید متناهی باشند. پس از بررسی خواص اساسی مدولهای h_{i}^{i}(m,n) نشان می دهیم که f-depth (i+ann_{r}(m),n) = inf{ i?n_{0 | نیست آرتینیh_{i}^{i}(m,n)} سپس فرض می کنیم t یک عدد صحیح مثبت باشد. نشان می دهیم: (1) اگر برای هر i<t ...
هم متناهی و متناهی بودن مدول های کوهمولوژی موضعی تعمیم یافته
فرض می کنیم r یک حلقه موضعی (نوتری) و جابجایی، i یک ایده آلی از r و m، n دو -r مدول با تولید متناهی باشند. پس از بررسی خواص اساسی مدولهای h_{i}^{i}(m,n) نشان می دهیم که f-depth (i+ann_{r}(m),n) = inf{ i?n_{0 | نیست آرتینیh_{i}^{i}(m,n)} سپس فرض می کنیم t یک عدد صحیح مثبت باشد. نشان می دهیم: (1) اگر برای هر i<t ...
15 صفحه اولهم متناهی بودن مدول های کوهمولوژی موضعی
در این رساله به بحث روی مدول های کوهمولوژی میپردازیم .و نشان میدهیم که تحت شرایط خاص ایدهال های اول وابسته i-امین مدول کوهمولوژی متناهی است
15 صفحه اولهم متناهی بودن مدول های کوهمولوژی موضعی
فرض کنیم r حلقه ای نوتری و m یک r ـ مدول غیر صفر مولد متناهی باشد. همچنین فرض کنیم i ایده آلی از r و t یک عدد صحیح نامنفی باشد. در این پایان نامه ثابت می شود هرگاه r ـ مدول های (h_i^{t-1} (m) , . . . ,h_i^0 (m مینیماکس باشند آنگاه به ازای هر زیرمدول مینیماکس (h_i^t (m نظیر r ،n ـ مدول (hom_r((r/i,h_i^t (m)/ n مولد متناهی بوده و در نتیجه مجموعه ایده آل های اول وابسته h_i^t (m )/n متناهی است. در ...
15 صفحه اولمینیماکس بودن و هم متناهی بودن مدول های کوهمولوژی موضعی
ررسی مینیماکس بودن و هم متناهی بودن مدول های کوهمولوژی موضعی موضوع اصلی این رساله می باشد. در این راستا به بیان و اثبات چند قضیه می پردازیم. بدین منظور فرض کنید $r$ یک حلقه ی جابجایی و نوتری و $i$ ایده آلی از $r$ باشد. فرض کنید $m$ یک $-r$مدول ناصفر باشد. نشان می دهیم که $-n$ امین بعد متناهی برای هر $n in mathbb{n}_{circ}$ به صورت زیر می باشد: $$ f_{i}^{n}(m) := inf leftlb...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023