مقایسه عملکرد شبکه های عصبی مصنوعی(ann) و مدل میانگین متحرک انباشته اتورگرسیو(arima) در مدلسازی و پیش بینی کوتاه مدت روند نرخ ارز درایران
پایان نامه
- دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده اقتصاد
- نویسنده سیده فاطمه شجاعیان
- استاد راهنما عباسعلی ابونوری فرداد فرخی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1391
چکیده
نرخ ارز و نوسانات آن به عنوان یکی از مهمترین ترین مسائل بخش بازرگانی خارجی هر کشور از اهمیت ویژه ای برخوردار است. عوامل زیادی همچون عوامل اقتصادی، سیاسی، و روانی بر نرخ ارز تاثیرگذار هستند و این عوامل خود باعث ایجاد شرایط نااطمینانی بیشتر می شوند. در این راستا تلاش سیاست گذاران در کاهش این نااطمینانی از طریق پیش بینی این متغیر باکمترین خطا بوده است. شبکه های عصبی مصنوعی از قابلیت بالایی در مدلسازی فرآیندهای پیچیده و پیش بینی مسیرهای غیرخطی پویا برخوردار هستند. لذا در این مطالعه سعی گردیده است تا با استفاده از شبک? عصبی مصنوعی(ann) علاوه بر مدل سازی و پیش بینی روزانه نرخ ارز طی دوره زمانی فروردین 1381 تا اسفند 1384، و کمینه نمودن خطای پیش بینی توسط این روش، نتایج آن با مقادیر پیش بینی شده توسط مدل arima بر اساس معیارهای اندازه گیری دقت پیش بینی، مورد مقایسه قرار گرفته و برای بررسی حساسیت نتایج مدل نسبت به نرخ ارز، تخمین مدل با روش مشابه برای سه دسته داده نرخ ارز دلار، یورو و پوند انجام گرفته است. نتایج تحقیق نشان می دهد که شبک? عصبی مورد استفاده، نسبت به مدل arima از قدرت پیش بینی بهتری برخوردار است و قیمت نرخ های ارز پوند و یورو تابعی از قیمتهای روز گذشته خود و قیمت نرخ ارز دلار تابعی از قیمت 6 روز گذشته خود است.
منابع مشابه
مقایسه عملکرد شبکه های عصبی مصنوعی(ann)و مدل میانگین متحرک انباشته اتورگرسیو (arima) در مدلسازی و پیش بینی کوتاه مدت روند نرخ ارز در ایران
نرخ ارز و نوسانات آن به عنوان یکی از مهمترین مسائل بخش بازرگانی خارجی هر کشور از اهمیت ویژهای برخوردار است. عوامل زیادی همچون عوامل اقتصادی، سیاسی، و روانی بر نرخ ارز تاثیرگذار هستند و این عوامل خود باعث ایجاد شرایط نااطمینانی بیشتر میشوند. در این راستا تلاش سیاستگذاران در کاهش این نااطمینانی از طریق پیشبینی این متغیر باکمترین خطا بوده است. شبکههای عصبی مصنوعی از قابلیت بالایی در مدلسازی...
متن کاملمقایسه عملکرد شبکههای عصبی مصنوعی(ANN)و مدل میانگین متحرک انباشته اتورگرسیو (ARIMA) در مدلسازی و پیشبینی کوتاه مدت روند نرخ ارز در ایران
نرخ ارز و نوسانات آن به عنوان یکی از مهمترین مسائل بخش بازرگانی خارجی هر کشور از اهمیت ویژهای برخوردار است. عوامل زیادی همچون عوامل اقتصادی، سیاسی، و روانی بر نرخ ارز تاثیرگذار هستند و این عوامل خود باعث ایجاد شرایط نااطمینانی بیشتر میشوند. در این راستا تلاش سیاستگذاران در کاهش این نااطمینانی از طریق پیشبینی این متغیر باکمترین خطا بوده است. شبکههای عصبی مصنوعی از قابلیت بالایی در مدلسازی...
متن کاملبکارگیری مدل های ترکیبی میانگین متحرک خودرگرسیون انباشته فازی احتمالی به منظور پیش بینی نرخ ارز
متن کامل
مقایسه قدرت مدل های شبکه عصبی مصنوعی و شبکه عصبی پویا در پیش بینی نرخ ارز: کاربردی از تبدیل موجک
این مطالعه تلاشی است در جهت بهکارگیری ترکیب مدل شبکهی عصبی پویا و تجزیهی موجک جهت میسر نمودن امکان انتخاب یک الگوی بهینه جهت پیشبینی متغیر مذکور میباشد. جهت تحقق این مهم، از دادههای سریزمانی ماهانهی نرخ ارز طی بازهی زمانی فروردین 1377 الی آذر 1391، که مشتمل بر 177 مشاهده بوده که از این بین، تعداد 150 مشاهده جهت مدلسازیها استفاده شده و تعداد 27 مشاهده نیز جهت شبیهسازی و یا به بیان دی...
متن کاملبه کارگیری مدل میانگین متحرک خودرگرسیون انباشته فازی به منظور پیش بینی نرخ ارز
در دنیای امروز به کارگیری روشهای کمی پیش بینی در زمینه های مختلف مورد توجه گسترده قرار گرفته است. تغییرات سریع محیطهای ناشناخته در دنیای واقعی و به ویژه بازارهای مالی سبب ایجاد مشکلاتی برای پیش بینی کنندگان به منظور تأمین داده های مورد نیاز شده است. مدلهای میانگین متحرک خود رگرسیون انباشته (arima) دارای محدودیت تعداد داده های گذشته بوده و شبکه-های عصبی مصنوعی (anns) نیز به منظور حصول نتایج دقیق...
متن کاملپیش بینی نرخ ارز در بازار سرمایه با استفاده از مدل های میانگین متحرک خود رگرسیون انباشته و شبکه عصبی )مطالعه موردی: دلار استرالیا، دلار کانادا، ین ژاپن و پوند انگلستان(
سیاست گذاران پولی به منظور جلوگیری از زیان های ناشی از تغییرات از هم گسیخته نرخ ارز، همواره درصددیافتن روشی مناسب برای پیش بینی نرخ ارز بوده اند. لیکن ویژگیهای چند بعدی نرخ ارز باعث رفتار پیچیده وغیرخطی آن شده است. یکی از روش های سنتی پی بینی، تجزیه و تحلیل سری زمانی است که بر دو فرض ایستاییو خطی بودن بنیان نهاده شده است. در مورد عملکرد این مدل های سنتی بعضاٌ تردیدهای ایجاد شده است. یکی ازروش ها...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده اقتصاد
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023