روش تبدیل دیفرانسیل برای معادلات تابعی و مقایسه نتایج آن با روش آدومین
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم ریاضی
- نویسنده متین برندکام
- استاد راهنما جعفر بی آزار
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1391
چکیده
در این پایان نامه روش تبدیل دیفرانسیل، برای حل معادلات تابعی از قبیل معادلات دیفرانسیل، معادلات اینتگرو-دیفرانسیل، و دستگاه های آن ها، مطالعه می شود و نتایج حاصل از این روش با نتایج به دست آمده از روش تجزیه آدومین مقایسه می شود. مثال های متنوعی برای نشان دادن برتری این روش آمده است. در فصل آخر روش تعادل همگن معرفی شده است
منابع مشابه
روش تبدیل دیفرانسیل برای حل معادلات تابعی و مقایسه نتایج با بعضی روش های متداول
در این پایان نامه روش تبدیل دیفرانسیل برای حل معادلات دیفرانسیل معمولی و سیستم معادلات دیفرانسل معمولی مورد استفاده قرار می گیرد و نتایج بدست آمده با روش های دیگر مقایسه می شود.این مقایسه برتری روش تبدیل دیفرانسیل نسبت به روش های دیگر را نشان می دهد.مثال های متنوعی برای نشان دادن قابلیت های روش تبدیل دیفرانسیل آمده است.برای انجتم محاسبات از نرم افزار میپل 13 استفاده شده است.
15 صفحه اولمقایسه توانایی روش های آدومین و آدومین-دوان راچ برای حل یک معادله دیفرانسیل غیرخطی مرتبه چهارم با مقادیر مرزی
در مقاله حاضر، یک معادله دیفرانسیل غیر خطی مرتبه چهارم با چهار شرط مرزی مشخص با استفاده از روش اصلاح شده تجزیه ی آدومین-دوان راچ حل شده است. اصلاحیه روش آدومین از حل یک سری معادلات جبری غیر خطی در تعیین ضرایب مجهول با ریشه های مضاعف جلوگیری کرده و در نتیجه سری بدست آمده از روش آدومین با سرعت زیادی به جواب دقیق همگرا می شود. در این روش شرایط مرزی قبل از تعیین ضرایب چند جمله ای های آدومین اعمال م...
متن کاملمقایسه توانایی روش های آدومین و آدومین-دوان راچ برای حل یک معادله دیفرانسیل غیرخطی مرتبه چهارم با مقادیر مرزی
در مقاله حاضر، یک معادله دیفرانسیل غیر خطی مرتبه چهارم با چهار شرط مرزی مشخص با استفاده از روش اصلاح شده تجزیه ی آدومین-دوان راچ حل شده است. اصلاحیه روش آدومین از حل یک سری معادلات جبری غیر خطی در تعیین ضرایب مجهول با ریشه های مضاعف جلوگیری کرده و در نتیجه سری بدست آمده از روش آدومین با سرعت زیادی به جواب دقیق همگرا می شود. در این روش شرایط مرزی قبل از تعیین ضرایب چند جمله ای های آدومین اعمال م...
متن کاملروش های مثلثاتی برای حل انواع معادلات گوردون و مقایسه نتایج با روش تجزیه آدومین
چکیده ندارد.
15 صفحه اولروش آنالیز هوموتوپی برای حل معادلات تابعی و مقایسه ی نتایج با بعضی روش های متداول
یکی از روش های قوی برای حل مسائل غیر خطی معادلات دیفرانسیل جزئی و معادلات دیفرانسیل معمولی که در مدل سازی مسائل فیزیکی و مهندسی به کار برده می شود روش های آشفتگی است. در این پایان نامه روش آنالیز هوموتوپی برای حل معادلات تابعی به کار رفته است و نشان داده شده است که روش های آشفتگی هوموتوپی و تجزیه آدومین حالت خاصی از روش آنالیز هوموتوپی هستند. برای نشان دادن قابلیت ها و توانایی های این روش مثال ...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم ریاضی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023